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Abstract

Economists use quantitative trade and spatial models to make counterfactual pre-

dictions. Because such predictions aim to inform policy decisions, it is important to

communicate the uncertainty surrounding them. Three key challenges arise in this

setting: the data are dyadic and exhibit complex dependence; the number of inter-

acting units is typically small; and counterfactual predictions depend on the data in

two distinct ways—through the estimation of structural parameters and through the

description of the status quo. I propose a new Bayesian bootstrap procedure that is

tailored to this setting and that addresses these challenges. The procedure is sim-

ple to implement and provides both finite-sample Bayesian and asymptotic frequentist

guarantees. I illustrate the practical advantages of this approach by revisiting the ap-

plications in Waugh (2010), Caliendo and Parro (2015), and Artuç, Chaudhuri, and

McLaren (2010).

1 Introduction

Economists use quantitative trade and spatial models to answer counterfactual questions.

For example, what is the effect on welfare levels and inequality when trade costs or tariffs

between a set of countries change? What happens to employment shares and wages across
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sectors after a sudden liberalization of the manufacturing sector? Since such counterfactual

predictions aim to inform policy decisions, it is important to communicate the uncertainty

surrounding them. However, in practice, counterfactuals are often reported without any

measure of uncertainty. For instance, in a survey of recently published articles only 2 out of

36 papers report any uncertainty quantification for their counterfactual predictions.1

Counterfactual predictions are typically constructed in two steps. First, the data are

used to estimate a finite-dimensional structural parameter, for example using the gener-

alized method of moments (GMM). Second, the estimator is combined with the observed

data—which reflect the current state of the world—to compute the counterfactual predic-

tion. For instance, in the canonical Armington model (Armington, 1969), the first step

involves estimating a trade elasticity using observed bilateral trade flows. In the second

step, the estimated elasticity is combined with the trade flows to predict welfare changes

under a hypothetical shift in trade costs.

Quantifying uncertainty for such a counterfactual raises three main challenges. First, the

data are often dyadic, meaning that each observation reflects an interaction between two

units. This induces a strong dependence structure across observations. Second, the number

of interacting units—such as countries or sectors—is typically small, making it important

to use methods that retain a clear interpretation in small samples. Third, the data enter

both the estimation of the structural parameter and the computation of the counterfactual

prediction, so that the prediction depends on the data in two distinct ways. This creates a

non-classical setting for uncertainty quantification (Sanders, 2023).

To address these challenges and support more informed policy decisions, I propose a

Bayesian approach. Specifically, to quantify uncertainty for the estimator of the struc-

tural parameter, I introduce a new Bayesian bootstrap procedure that is intuitive, easy to

implement, and theoretically grounded. The procedure amounts to reweighting the data

using products of draws from an exponential distribution. It readily extends to settings

where only subset of all possible flows is observed (e.g. because observations that equal

zero are dropped), or where the data are polyadic (i.e., each observation involves more than

two units). Because the approach is Bayesian, it also implies a posterior distribution for

the counterfactual prediction with a finite-sample interpretation. Provided one is satisfied

with the Bayesian interpretation, the shape of the posterior conveys valuable information

for decision-making. For instance, right-skewness could suggest greater potential for large

1The survey includes all papers published between 2015 and 2024 in American Economic Review, Econo-
metrica, Journal of Political Economy, Quarterly Journal of Economics, and Review of Economic Studies)
that contain the phrase “bilateral trade flows” or “bilateral flows” and conduct a counterfactual exercise.
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welfare gains, while left-skewness indicates a chance of substantial welfare losses.

The key theoretical contribution of this paper is to introduce and justify a new Bayesian

bootstrap procedure tailored to polyadic data structures. The procedure extends the classical

Bayesian bootstrap (Rubin, 1981; Chamberlain and Imbens, 2003) to settings where each

observation involves more than a single unit. One main result of this paper is to show that

this procedure admits a finite-sample Bayesian interpretation. Specifically, I show that the

Bayesian bootstrap distribution arises as the limit of a sequence of Bayesian posteriors, under

a particular model and class of priors. The underlying model assumes that the polyadic data

are generated as functions of unit-specific latent variables, which are drawn independently

from a common distribution. The distribution of latent variables acts as unknown parameter

and is endowed with a Dirichlet process prior. In the main text, I provide several additional

motivations for the model and prior underlying my results.

The fact that the Bayesian bootstrap procedure admits a finite-sample Bayesian inter-

pretation is particularly relevant in applications with a small number of units. In addition to

its finite-sample Bayesian validity, the procedure is also asymptotically valid in a frequentist

sense under mild regularity conditions. These conditions are generally satisfied, for example,

by the class of GMM estimators, including the Pseudo Poisson Maximum Likelihood (PPML)

estimator of Silva and Tenreyro (2006). This dual validity makes the procedure competitive

with existing methods in the literature—reviewed below—whose sole justification is asymp-

totic. For frequentist uncertainty quantification on the counterfactual prediction, I provide

a delta method-type result that accounts for the fact that a counterfactual prediction can

depend on the data in two distinct ways.

Throughout the paper, I use the application in Waugh (2010) as a running example. In

this setting, the structural parameter is a productivity parameter common across countries;

the interacting units are 43 countries; and the estimation method is simple OLS on dyadic

trade flows—a special case of GMM. The posterior variance implied by my procedure is

considerably larger than the heteroskedasticity-robust variance reported in Waugh (2010),

which does not account for dependence across dyads—such as trade flows that share a country

in common. The counterfactual objects of interest are various inequality statistics under

alternative trade cost schedules, for which I construct credible intervals; these intervals are

narrow, and there is not much economically meaningful uncertainty in the counterfactuals.

Thus, despite yielding much more uncertainty about model parameters, my approach delivers

precise inference on counterfactuals.

To further illustrate the flexibility of the procedure, I also revisit results in Caliendo and
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Parro (2015) and Artuç, Chaudhuri, and McLaren (2010). In Caliendo and Parro (2015), the

structural parameters are sector-specific trade elasticities; the interacting units are countries;

and the estimation method is simple OLS on triadic flows. The number of countries per

sector ranges from 11 to 15. The credible intervals for the elasticities are substantially

wider than the heteroskedasticity-robust confidence intervals reported in the original paper,

and they often include zero. For some sectors, the posterior distribution of the elasticity is

approximately normal; for others, it is skewed or heavy-tailed. The counterfactual objects

of interest are changes in welfare due to NAFTA, originally reported in Caliendo and Parro

(2015) without uncertainty quantification. The credible intervals around welfare predictions

reflect substantial uncertainty and considerable heterogeneity across countries, although the

ranking of welfare effects across countries remains unchanged.

In the setting of Artuç, Chaudhuri, and McLaren (2010), the structural parameters are

the mean and variance of workers’ switching costs between sectors; the interacting units are

six sectors, and the estimation method is over-identified GMM with three instruments. The

posterior distributions for both parameters are non-normal and exhibit heavy right tails,

indicating substantial uncertainty—particularly regarding the possibility of large switching

costs. The counterfactual objects of interest are changes in various economic outcomes

following a liberalization of the manufacturing sector, and the resulting credible intervals

again reveal substantial uncertainty. Notably, accounting for this uncertainty reveals that

equilibrium wages may plausibly increase as a result of liberalization—a finding not visible

from point estimates alone.

The procedure I propose substantially improves how uncertainty is quantified for both

the structural parameter and the counterfactual prediction, relative to current practice in

quantitative trade and spatial economics. In the survey mentioned above, 24 out of 36

papers report a standard error for the estimator of the structural parameter. However, the

most common approach is to compute heteroskedasticity-robust standard errors by clustering

either on dyads or only on the origin or destination unit, implicitly ignoring important

dependence across flows. A more flexible alternative, used in several papers, is two-way

clustering on both the origin and destination units. While two-way clustering allows for

richer dependence, it still fails to capture key dyadic correlations—for example, between the

trade flow from Germany to the United States and the trade flow from France to Germany,

since these share neither an exporter or importer. Ideally, one would allow for dependence

between flows that have at least one unit in common. A small literature proposes methods

to account for such dyadic dependence (Fafchamps and Gubert, 2007; Cameron and Miller,
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2014; Aronow, Samii, and Assenova, 2015; Graham, 2020a,b; Davezies, D’haultfœuille, and

Guyonvarch, 2021). However, it remains rare for published papers in quantitative trade and

spatial economics to adopt these tools.2

I compare my procedure to two alternatives from the recent econometrics literature. The

closest is the pigeonhole bootstrap introduced by Davezies, D’haultfœuille, and Guyonvarch

(2021), which extends the standard resampling bootstrap to polyadic settings. Both my

approach and the pigeonhole bootstrap reweight polyadic observations using specific weights.

Practically, one key difference is that the Bayesian bootstrap assigns continuous and strictly

positive weights to all observations, whereas the pigeonhole bootstrap draws discrete weights

and may assign zero weight to some. Theoretically, another key difference is that theoretical

guarantees for the pigeonhole bootstrap rely on asymptotic approximations that assume a

large number of interacting units. The quantitative trade and spatial models I aim to address

frequently involve small numbers of units. In my examples discussed below, I show that the

pigeonhole bootstrap can be numerically unstable and tends to produce wider confidence

intervals than the Bayesian bootstrap procedure. By contrast, in settings with a large number

of interacting units, the approaches are approximately equivalent under standard regularity

conditions.

A second alternative for uncertainty quantification is to derive frequentist standard errors.

Graham (2020a,b) builds on earlier work (Fafchamps and Gubert, 2007; Cameron and Miller,

2014; Aronow, Samii, and Assenova, 2015) to develop consistent variance estimators for

maximum likelihood estimators. I extend these results to Z-estimators—that is, estimators

defined as the solution to a system of estimating equations. As with the pigeonhole bootstrap,

the validity of these frequentist standard errors relies on asymptotic approximations, which

may perform poorly when the number of interacting units is small. Again, when the number

of interacting units is large, using analytic standard errors is approximately equivalent to

using my approach under standard regularity conditions.

Both Davezies, D’haultfœuille, and Guyonvarch (2021) and Graham (2020a,b) exclusively

focus on uncertainty quantification for the estimator of the structural parameter.3 Since the

counterfactual prediction depends on this estimator as an input, it inherits the challenges

associated with dyadic data and a small number of interacting units. As a result, valid

2To date, among all papers citing the literature on accounting for dyadic dependence, only two papers both
contain the phrase “bilateral trade flows” or “bilateral flows” and explicitly account for dyadic dependence:
Rosendorf (2023) and Wigton-Jones (2024).

3As mentioned above, only 2 out of 36 papers in the survey report uncertainty quantification for their
counterfactual prediction. Adao, Costinot, and Donaldson (2017) samples from the asymptotic distribution
of the estimator, while Allen, Arkolakis, and Takahashi (2020) samples uniformly over its confidence interval.
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uncertainty quantification for counterfactual predictions using these methods also relies on

asymptotic approximations. In contrast, my Bayesian bootstrap procedure provides valid

finite-sample uncertainty quantification for counterfactual predictions.

This paper contributes to several literatures. First, it contributes a new method for

uncertainty quantification to the growing body of work aimed at improving counterfactual

analysis in quantitative trade and spatial economics (Kehoe, Pujolas, and Rossbach, 2017;

Adao, Costinot, and Donaldson, 2017; Dingel and Tintelnot, 2020; Adão, Costinot, and Don-

aldson, 2023; Sanders, 2023; Ansari, Donaldson, and Wiles, 2024). Second, by introducing a

Bayesian procedure with a finite-sample interpretation in a non-standard setting, it advances

research on bootstrap methods designed for situations where standard resampling approaches

fail (Janssen, 1994; Davezies, D’haultfœuille, and Guyonvarch, 2021; Menzel, 2021). Third,

it contributes to the emerging literature on uncertainty quantification in polyadic settings

by offering a method that is both easy to implement and valid in finite samples (Snijders,

Borgatti et al., 1999; Graham, 2020a,b; Menzel, 2021; Davezies, D’haultfœuille, and Guyon-

varch, 2021; Graham, 2024). While the Bayesian bootstrap is briefly mentioned in Graham

(2020b) in the context of dyadic regression, it has not been further developed or applied in

polyadic settings.

The rest of the paper is organized as follows. Section 2 introduces the setting and the

proposed Bayesian bootstrap procedure. Sections 3 and 4 present the main theoretical con-

tributions, focusing on finite-sample Bayesian results and asymptotic validity, respectively.

Section 5 discusses several extensions of the core framework. Section 6 applies the pro-

posed procedure to the empirical settings studied in Caliendo and Parro (2015) and Artuç,

Chaudhuri, and McLaren (2010). Section 7 compares the proposed procedure to alternative

methods for uncertainty quantification. Section 8 concludes.

2 Setting and Proposed Procedure

In this section I introduce the setting and goal of the paper. I lay out my proposed procedure

and illustrate it using my running example. I consider misspecification-robust uncertainty

quantification for over-identified GMM as a special case. Theoretical justifications are de-

ferred to Sections 3 and 4.
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2.1 Setting and Goal

2.1.1 Data Environment

We observe a sample of bilateral data {Xkℓ}k ̸=ℓ ∈ X n(n−1) with X ⊆ RdX , with n ∈ N the

number of interacting units. Since we consider bilateral data, the effective sample size is

n (n− 1).

Example (Waugh, 2010). In Waugh (2010), the interacting units are 43 countries so n = 43.

The data are

Xkℓ = (λkℓ, λkk, τkℓ, pk, pℓ) ∈ X = [0, 1]2 × (1,∞]× R2
+,

for k ̸= ℓ.4 Here, λkℓ denotes country ℓ’s expenditure share on goods from country k,

τkℓ denotes estimated iceberg trade costs from country k to country ℓ, and pk denotes the

aggregate price of goods in country k. △

2.1.2 Structural Estimator and Estimand

Denote the empirical distribution of the data by

Pn,Xij
=
∑
k ̸=ℓ

1

n (n− 1)
· δXkℓ

, (1)

for δx the Dirac measure at x. The Dirac measure at a single observation Xkℓ corresponds

to a degenerate probability distribution which puts a mass of 1 at that observation. The

empirical distribution hence assigns mass 1
n(n−1)

to each observation Xkℓ.

The researcher aims to estimate a structural parameter using the observed data {Xkℓ}k ̸=ℓ.

I assume the estimator θ̂ is a function of the empirical distribution. For ease of exposition I

assume θ̂ is a scalar, but the same arguments apply to vector-valued θ̂.

Assumption 1 (Structural estimator). We have

θ̂ = T
(
Pn,Xij

)
, (2)

for a known function T : ∆ (X ) → Θ ⊆ R.

Here, ∆ (X ) denotes the set of all probability distributions over X . Assumption 1 covers

many common estimators such as averages, regression estimators and generalized method of

4The sample size in Waugh (2010) is not actually 43 · 42 = 1806 but 1373, because observations with
λkℓ = 0 are dropped. I will come back to this in Section 2.2.1.
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moments (GMM) estimators:

TAVG

(
Pn,Xij

)
= EPn,Xij

[Xij] =
∑
k ̸=ℓ

1

n (n− 1)
·Xkℓ

TOLS

(
Pn,(Fij ,Rij)

)
= argmin

ϑ∈Θ
EP

n,(Fij ,Rij)

[
(Fij − ϑRij)

2] = ∑
k ̸=ℓ FkℓRkℓ∑

k ̸=ℓR
2
kℓ

TGMM

(
Pn,Xij

)
= argmin

ϑ∈Θ
EPn,Xij

[ψ (Xij;ϑ)]
′
ΩEPn,Xij

[ψ (Xij;ϑ)] .

Estimators that are not covered by Assumption 1 are estimators that involve multiple flows,

such as the network moments discussed in Graham (2020b).5

Example (Waugh, 2010). The relevant empirical distribution in Waugh (2010) is

Pn,Xij
=
∑
k ̸=ℓ

1

n (n− 1)
· δ(λkℓ,λkk,τkℓ,pk,pℓ).

The author aims to estimate a productivity parameter which governs the dispersion of effi-

ciency levels across countries. An arbitrage condition motivates the simple linear regression

using
{
log
(

λkℓ

λkk

)}
k ̸=ℓ

and
{
log
(
τkℓ

pk
pℓ

)}
k ̸=ℓ

:

θ̂ = −TWaugh

(
Pn,Xij

)
= −argmin

ϑ∈Θ
EPn,Xij

[(
log

(
λij
λii

)
− ϑ log

(
τij
pi
pj

))2
]

= −

∑
k ̸=ℓ log

(
λkℓ

λkk

)
log
(
τkℓ

pk
pℓ

)
∑

k ̸=ℓ

(
log
(
τkℓ

pk
pℓ

))2 . (3)

The estimator θ̂ satisfies Assumption 1. △

Note that estimators that can be written as in Equation (2) are permutation invariant

with respect to the observed data {Xkℓ}k ̸=ℓ, because for any permutation σ : {1, ..., n} →
{1, ..., n}, we have

θ̂ = T

(∑
k ̸=ℓ

1

n (n− 1)
· δXkℓ

)
= T

(∑
k ̸=ℓ

1

n (n− 1)
· δXσ(k)σ(ℓ)

)
.

5Assumption 1 can be extended to accommodate weighted empirical distributions Pω
n,Xij

=
∑

k ̸=ℓ ωkℓ·δXkℓ
.

This may be desirable, for example, when assigning lower weight to trade flows between small and distant
economies. In such cases, the weight can be absorbed into the definition of the observation. Specifically, make

the restriction that θ̂ = φ
(
EPω

n,Xij
[f (Xij)]

)
, for some function f . Then we can write θ̂ = φ

(
EPn,Yij

[Yij ]
)

for Yij = n (n− 1)ωijf (Xij).
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For the purposes of structural estimation, it is then without loss to assume that the observed

data are jointly exchangeable, which means that the joint distribution does not change when

we relabel the indices, so that

{Xkℓ}k ̸=ℓ

d
=
{
Xσ(k)σ(ℓ)

}
k ̸=ℓ

,

for any permutation σ : {1, ..., n} → {1, ..., n}.6 Joint exchangeability of the data implies

that the elements of {Xkℓ}k ̸=ℓ have a common marginal probability distribution, which I will

denote by PXij
. The structural estimand of interest then is

θ ≡ T
(
PXij

)
. (4)

Note that while the functional T is not n-specific, the estimand θ can depend on n.7 More-

over, the estimand might differ from the structural parameter of interest if the model is

misspecified, as illustrated in the next example. In such cases, my results deliver valid

inference for the estimand θ.

Example (Waugh, 2010). Given that Waugh (2010) considers a simple regression, for the

purposes of estimation, it is without loss to assume that the observed data {Xkℓ}k ̸=ℓ are

jointly exchangeable. Here, joint exchangeability means that the joint distribution of bilateral

data remains unchanged if we relabel the countries. Joint exchangeability implies that there

exists some marginal distribution PXij
from which all the observations are drawn. The

structural estimand of interest then equals the negative of the function TWaugh applied to

PXij
, so that

θ ≡ −TWaugh

(
PXij

)
= −argmin

ϑ∈Θ
EPXij

[(
log

(
λij
λii

)
− ϑ log

(
τij
pi
pj

))2
]
.

6In other papers concerning dyadic dependence (Graham, 2020a,b; Davezies, D’haultfœuille, and Guyon-
varch, 2021), joint exchangeability is used as a primitive assumption. I instead motivate it by focusing on the
class of estimators that satisfy Assumption 1. Relatedly, one could relax Assumption 1 by instead assuming
that the estimator is symmetric under relabeling of the indices. However, this complicates subsequent steps
considerably, and estimators that satisfy such a symmetry property but are not functions of the empirical
distribution come up rarely in quantitative trade and spatial models.

7To see this, suppose we know the joint distribution of {Xkℓ}k ̸=ℓ, denoted by Pn, with marginals(
Pn
X12

, ...,Pn
Xn(n−1)

)
and no restriction on the copula. This joint distribution may vary with n; for ex-

ample, the distribution of observations from an economy with three countries may differ from that of an
economy with four. In such cases, PXij denotes the marginal of a randomly selected observation, and thus
both PXij and θ generally depend on n.
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This estimand corresponds to the coefficient in the regression

log

(
λij
λii

)
= −θ log

(
τij
pi
pj

)
+ εij, (5)

for an orthogonal error term εij. The regression coefficient in Equation (3) was motivated

by the model equation

log

(
λij
λii

)
= −θM log

(
τij
pi
pj

)
,

which does not hold exactly in-sample because of country-level productivity shocks. The

regression equation recovers the true structural parameter θM under the assumption that

the productivity shocks are exogenous and follow a Fréchet distribution. Nevertheless, since

Waugh (2010) conducts estimation based on Equation (3), I focus going forward on the

resulting estimand θ rather than the structural parameter θM .△

2.1.3 Counterfactual Predictions

In quantitative trade and spatial models, researchers are interested in forming counterfactual

predictions. Since these predictions are relative to some observed factual situation, they are

functions of the realized bilateral data {Xkℓ}k ̸=ℓ and the structural estimator θ̂:

Assumption 2 (Counterfactual prediction). The reported counterfactual prediction of interest

can be written as

γ̂ = g
(
{Xkℓ}k ̸=ℓ , θ̂

)
, (6)

for a known function g : X n(n−1) ×Θ → R.

The corresponding estimand is

γ ≡ g
(
{Xkℓ}k ̸=ℓ , θ

)
≡ g

(
{Xkℓ}k ̸=ℓ , T

(
PXij

))
.

In conventional economic models the estimand of interest is typically defined as a function of

the population distribution of the data, not the specific realized observations. In contrast, γ

depends both on the realized bilateral data and on a population distribution, which creates a

non-classical setting (Sanders, 2023). Note that even when the estimand θ does not depend

on n, the estimand γ will generally vary with n, as it depends on the realized data.8

8Furthermore, Assumption 2 encompasses“invertible”quantitative trade and spatial models (Redding and
Rossi-Hansberg, 2017), in which a subset of structural parameters—often referred to as “model fundamen-
tals”—are first backed out from observed data. These fundamentals are then held fixed in any counterfactual
exercise that follows, so they do not influence Bayesian uncertainty quantification.
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Example (Waugh, 2010). After obtaining the estimator θ̂, we can use the model in Waugh

(2010) to find the equilibrium wage vector for a given counterfactual trade cost schedule.

The relevant counterfactual mapping is

{Xkℓ}k ̸=ℓ , θ̂,
{
τ cfkℓ
}
7→
{
ŵcf

k

}
. (7)

It maps the realized data, the structural estimator and a counterfactual trade cost schedule to

a vector which contains the counterfactual wage for all 43 countries. Appendix A.1 outlines

the details of this mapping. From the counterfactual wage vector we can compute various

scalar objects of interest, such as the wage level of a specific country or a summary statistic

across countries. Each such object corresponds to a particular function g, as described in

Assumption 2.

Waugh (2010) considers a series of counterfactuals that calculate inequality statistics of

the equilibrium wage vector for different trade cost schedules. The inequality statistics are

the variance of log wages, the ratio of the 90th and 10th percentile of wages, and the mean

percentage change in wages. The different counterfactual trade cost schedules are autarky

(τ cfij = ∞ for all i ̸= j), symmetry (τ cfij = min {τij, τji} for all i ̸= j) and free trade (τ cfij = 1 for

all i ̸= j). Using the equilibrium mapping in Equation (7), it follows that each counterfactual

prediction can be written as in Equation (6). The resulting point estimates are reported in

Table 4 of Waugh (2010) without any uncertainty quantification. △

The discussion in the previous two sections highlights two distinct statistical objects

of interest: the structural estimator θ̂ and the counterfactual prediction γ̂. To quantify

uncertainty for each, I proceed in two steps. First, in Section 2.2, I present a Bayesian

bootstrap procedure to quantify uncertainty for θ̂. Then, in Section 2.3, I use Assumption 2

to quantify uncertainty for γ̂.

2.2 Bayesian Uncertainty Quantification for the Structural Parameter

To quantify uncertainty for θ̂, I consider a bootstrap procedure. Specifically, in each boot-

strap iteration b = 1, ..., B, θ̂∗,(b) is computed by replacing the empirical distribution in

Equation (1) by a weighted version of this empirical distribution,

P∗,(b)
n,Xij

=
∑
k ̸=ℓ

ω
(b)
kℓ · δXkℓ

.

11



The weights
{
ω
(b)
kℓ

}
k ̸=ℓ

are computed using draws from a Dirichlet distribution,

ω
(b)
kℓ =

W
(b)
k ·W (b)

ℓ∑
s ̸=tW

(b)
s ·W (b)

t

,
(
W

(b)
1 , ...,W (b)

n

)
∼ Dir (n; 1, ..., 1) . (8)

In practice, it is convenient that the Dirichlet distribution Dir (n; 1, ..., 1) can be constructed

from i.i.d. draws from an exponential distribution:(
V

(b)
1 , ..., V (b)

n

)
iid∼ Exp (1)

W
(b)
k =

V
(b)
k∑n

s=1 V
(b)
s

, k = 1, ..., n

ω
(b)
kℓ =

V
(b)
k · V (b)

ℓ∑
s ̸=t V

(b)
s · V (b)

t

, k, ℓ = 1, ..., n.

The procedure to quantify uncertainty for the estimator θ̂ is summarized in Algorithm 1.

Algorithm 1 Bayesian bootstrap procedure

1. Input: Bilateral data {Xkℓ}k ̸=ℓ and estimator function T : ∆ (X ) → Θ.

2. For each bootstrap draw b = 1, ..., B:

(a) Sample
(
V

(b)
1 , ..., V

(b)
n

)
iid∼ Exp (1).

(b) Compute

θ̂∗,(b) = T

(∑
k ̸=ℓ

V
(b)
k · V (b)

ℓ∑
s ̸=t V

(b)
s · V (b)

t

· δXkℓ

)
.

3. Report the quantiles of interest of
{
θ̂∗,(1), ..., θ̂∗,(B)

}
.

This procedure is a natural generalization of the univariate Bayesian bootstrap (Rubin,

1981; Chamberlain and Imbens, 2003). It is intuitive and easy to implement, as it requires

only reweighting the data by products of standard exponential draws.

In Sections 3 and 4 I will provide various theoretical motivations for the Bayesian boot-

strap procedure. The key takeaway from Section 3 is that Algorithm 1 produces draws from

a limiting posterior for θ given the bilateral data {Xkℓ}k ̸=ℓ for a well-motivated model and

prior. In addition to this finite-sample Bayesian motivation, the key takeaway from Section

4 is that the bootstrap procedure is also asymptotically valid in a frequentist sense.
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Example (Waugh, 2010). Using Algorithm 1, we can obtain draws from the posterior distribu-

tion of the the productivity parameter in Waugh (2010) given the bilateral data. Specifically,

for each bootstrap iteration b, I compute a weighted regression coefficient:

θ̂∗,(b) = −TWaugh

(∑
k ̸=ℓ

V
(b)
k · V (b)

ℓ∑
s ̸=t V

(b)
s · V (b)

t

· δXkℓ

)

= −argmin
ϑ∈Θ

∑
k ̸=ℓ

V
(b)
k · V (b)

ℓ ·
(
log

(
λkℓ
λkk

)
− ϑ log

(
τkℓ
pk
pℓ

))2

.

Because the bootstrap distribution corresponds to a limiting posterior distribution, we can

interpret
{
θ̂∗,(1), ..., θ̂∗,(B)

}
as posterior draws. A 100 (1− α)% credible interval can then be

constructed by taking the empirical α/2 and 1 − α/2 quantiles of these draws. The 95%

credible interval is reported in Table 1 and the posterior distribution is plotted in Figure 1.

In Waugh (2010), no uncertainty quantification is discussed for θ̂. In the accompany-

ing code, the author computes the dyad-level heteroskedastic-robust standard error
√
Σ̂θ.

In Table 1 I add the corresponding 95% confidence intervals, computed using the familiar[
θ̂ ± 1.96 ·

√
Σ̂θ

]
. In Figure 1, I also plot a normal distribution with mean θ̂ and standard

error
√

Σ̂θ, since the standard confidence intervals rely on θ̂ to be approximately normal

centered at θ with variance Σ̂θ. We observe that the posterior is approximately normal but

has larger variance than reported in the accompanying code of the paper, which suggests

that considering dyadic dependence is important.

Point
estimate

95% confidence
interval
based on

Waugh (2010)

95% Bayesian
bootstrap
credible
interval

All countries, n = 43 5.55 [5.39, 5.71] [5.12, 6.02]

Table 1: Uncertainty quantification for productivity parameter in Waugh (2010).

Table 1 shows that the confidence intervals and credible intervals differ substantially.

To better understand this discrepancy, Appendix B presents a data-calibrated simulation

exercise based on the pigeonhole bootstrap—a method introduced in Section 7.1. This setup

enables a direct evaluation of the coverage performance of various uncertainty quantification

methods. Table 2 shows that confidence intervals based on heteroskedastic-robust have

below-nominal coverage. △
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Figure 1: Distributions for productivity parameter in Waugh (2010). “Waugh (2010)” cor-
responds to the normal approximation as implied by the standard error reported in Waugh
(2010), and “Bayesian bootstrap” corresponds to the smoothed Bayesian bootstrap distribu-
tion.

Based on
Waugh (2010)

Bayesian
bootstrap

All countries, n = 43 0.498 0.979

Table 2: Coverage for the approach used in Waugh (2010) and the Bayesian bootstrap using
the pigeonhole bootstrap DGP as described in Appendix B.

2.2.1 Special Case: Misspecification-Robust Uncertainty Quantification for GMM

Often, researchers are interested in over-identified GMM estimators of the form

θ̂ = argmin
ϑ∈Θ

EPn,Xij
[ψ (Xij;ϑ)]

′
Ω̂EPn,Xij

[ψ (Xij;ϑ)] ,

where ψ : X → RL with L ≥ 1, Xij ∈ X , θ ∈ Θ ⊆ R and Ω̂ is an estimated weight matrix.

For example, the PPML estimator in Silva and Tenreyro (2006) corresponds to the moment

function

ψ (Fij, Rij;ϑ) = (Fij − exp {Rijϑ})Rij, (9)
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where Fij ∈ R+ is the dependent variable and Rij ∈ R a regressor.

We know that the optimal weight matrix is the inverse of the variance-covariance matrix

of the moments at θ (Hansen, 1982; Chamberlain, 1987). In practice, since we require an

estimate of this optimal weight matrix, researchers often use a two-step procedure. In the

first step the identity matrix is used as a weight matrix:

ψn (ϑ) = EPn,Xij
[ψ (Xij;ϑ)] (10)

θ̂1−GMM = argmin
ϑ∈Θ

ψn (ϑ)
′
ψn (ϑ) . (11)

The resulting estimator is plugged in to find an estimator of the optimal weight matrix,

which is then used to find the two-step GMM estimator:9

Ω̂ (ϑ) =
(
EPn,Xij

[
{ψ (Xij;ϑ)− ψn (ϑ)} {ψ (Xij;ϑ)− ψn (ϑ)}

′
])−1

(12)

θ̂2−GMM = argmin
ϑ∈Θ

ψn (ϑ)
′
Ω̂
(
θ̂1−GMM

)
ψn (ϑ) . (13)

The two-step estimator satisfies Assumption 1, which implies that for the purposes of esti-

mation it is without loss to assume that the elements of {Xkℓ}k ̸=ℓ have a common marginal

distribution PXij
. The relevant moment conditions then are

EPXij
[ψ (Xij; θ)] = 0. (14)

These moments might be misspecified, meaning that there exists no θ ∈ Θ such that the

moment equations in Equation (14) hold. In this case, we might still be interested in doing

uncertainty quantification for the probability limit of the two-step GMM estimator in Equa-

tion (13)—the pseudo-true parameter. However, valid uncertainty quantification using the

conventional GMM standard errors hinges on the moments being well-specified (Hall and

Inoue, 2003; Lee, 2014).

The Bayesian bootstrap procedure from Algorithm 1 is robust to misspecification of the

two-step GMM estimator. This means that it yields valid uncertainty quantification in both

the finite-sample Bayesian and asymptotic frequentist senses. I will make the claim of valid

asymptotic frequentist uncertainty quantification precise in Section 4.1.3. The resulting

9I follow Lee (2014) and use the centered weight matrix, rather than the uncentered version

Ω̂uncentered (ϑ) =
(
EPn,Xij

[
ψ (Xkℓ;ϑ)ψ (Xkℓ;ϑ)

′])−1

. The choice of weight matrix affects the resulting

pseudo-true value. As outlined in Hall (2000), the uncentered version includes bias terms of the moment
function, which makes the centered version better behaved under misspecification.
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Bayesian bootstrap procedure is summarized in Algorithm 2. Effectively, each empirical

distribution Pn,Xij
in Equations (10)-(13) is replaced by its weighted analog.

Algorithm 2 Bayesian bootstrap procedure for GMM

1. Input: Bilateral data {Xkℓ}k ̸=ℓ, moment equations ψ : X → Θ.

2. For each bootstrap draw b = 1, ..., B:

(a) Sample
(
V

(b)
1 , ..., V

(b)
n

)
iid∼ Exp (1).

(b) Construct ω
(b)
kℓ = V

(b)
k · V (b)

ℓ /
(∑

s ̸=t V
(b)
s · V (b)

t

)
, for k, ℓ = 1, ..., n.

(c) Solve for θ̂∗,2−GMM,(b) from

ψ(b)
n (ϑ) =

∑
k ̸=ℓ

ω
(b)
kℓ · ψ (Xkℓ;ϑ)

θ̂∗,1−GMM,(b) = argmin
ϑ∈Θ

ψ(b)
n (ϑ)

′
ψ(b)
n (ϑ)

Ω̂(b) (ϑ) =

(∑
k ̸=ℓ

ω
(b)
kℓ ·

{
ψ (Xkℓ;ϑ)− ψ(b)

n (ϑ)
}{

ψ (Xkℓ;ϑ)− ψ(b)
n (ϑ)

}′
)−1

θ̂∗,2−GMM,(b) = argmin
ϑ∈Θ

ψ(b)
n (ϑ)

′
Ω̂(b)

(
θ̂∗,1−GMM,(b)

)
ψ(b)
n (ϑ) .

3. Report the quantiles of interest of
{
θ̂∗,2−GMM,(1), ..., θ̂∗,2−GMM,(B)

}
.

Example (Waugh, 2010). The estimator in Equation (3) has corresponding moment function

ψWaugh (Xij;ϑ) =

(
log

(
λij
λii

)
− (−ϑ) log

(
τij
pi
pj

))
log

(
τij
pi
pj

)
. (15)

In Waugh (2010), whenever λkℓ = 0 for countries k and ℓ, the corresponding observation Xkℓ

is omitted. This results in removing 433 out of the possible 43 · 42 = 1806 bilateral observa-

tions. To avoid removing these observations, one could adapt the simple OLS estimator to

a PPML estimator as in Equation (9), with corresponding sample moment condition

ψWaugh,PPML (Xij;ϑ) =

(
λij
λii

− exp

{
−ϑ log

(
τij
pi
pj

)})
log

(
τij
pi
pj

)
. (16)

In Appendix A.3 I compute the point estimates and posterior distributions while not omitting

zeros and using PPML. The point estimates drop considerably and there is more uncertainty.
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△

2.3 Bayesian Uncertainty Quantification for the Counterfactual

Taking a Bayesian perspective on uncertainty quantification, in Section 3 I show that for

a specific choice of model and prior, the posterior for θ given the bilateral data {Xkℓ}k ̸=ℓ

converges to the Bayesian bootstrap distribution as a certain informativeness parameter is

taken to zero.

Since we are also interested in uncertainty quantification for the counterfactual prediction,

we aim to find the corresponding limiting posterior for γ given the realized bilateral data

{Xkℓ}k ̸=ℓ. Towards this end, note that, conditional on the realized data {Xkℓ}k ̸=ℓ, the only

randomness is coming from the posterior for the structural parameter. So having obtained

draws
{
θ̂∗,(1), ..., θ̂∗,(B)

}
from the limiting posterior distribution for θ given the bilateral data

{Xkℓ}k ̸=ℓ using the Bayesian bootstrap procedure, we can use Assumption 2 to obtain draws

from the limiting posterior distribution for γ given the bilateral data {Xkℓ}k ̸=ℓ,

γ̂∗,(b) = g
(
{Xkℓ}k ̸=ℓ , θ̂

∗,(b)
)
, b = 1, ..., B. (17)

To construct Bayesian credible intervals, we can then report the relevant quantiles of the

draws
{
γ̂∗,(1), ..., γ̂∗,(B)

}
.

Example (Waugh, 2010). In Table 3, I reproduce Table 4 of Waugh (2010), but include 95%

Bayesian credible intervals. The resulting intervals are small, implying there is not much

economically meaningful uncertainty in the counterfactuals. △

Scenario Baseline Autarky Symmetry Free trade
τ cfij τij ∞ · I {i ̸= j} min {τij, τji} 1

Variance of
log wages

1.30
[1.28, 1.32]

1.35
[1.31, 1.38]

1.05
[1.05, 1.05]

0.76
[0.75, 0.78]

90th/10th percentile
of wages

25.7
[25.1, 26.2]

23.5
[22.6, 24.2]

17.3
[17.2, 17.4]

11.4
[11.0, 11.9]

Mean % change
in wages

-
-10.5

[-11.4, -9.6]
24.2

[22.4, 25.8]
128.0

[114.4, 140.7]

Table 3: Bayesian uncertainty quantification for counterfactual predictions as in Table 4 of
Waugh (2010). The numbers in brackets correspond to 95% Bayesian bootstrap credible
intervals.

Remark. Accompanying the paper, I provide an easy-to-use toolkit.10 It implements Algo-

10The toolkit is written in MATLAB and can be found on my website, https://sandersbas.github.io/.
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rithm 2, and takes as inputs a dataset and a GMM moment function, and outputs bootstrap

draws
{
θ̂∗,2−GMM,(b)

}
. It also includes a vignette, which illustrates the procedure by perform-

ing uncertainty quantification for the gains from trade estimates for the multi-sector model

with perfect competition in Costinot and Rodŕıguez-Clare (2014). These counterfactual pre-

dictions take as inputs the sector-level trade elasticities from Caliendo and Parro (2015) that

I will discuss in Section 6.1.

3 Theory for Finite-Sample Bayesian Interpretation

In this section I formally introduce and motivate the model and prior. I then present the key

result of the paper: the bootstrap procedure in Algorithm 1 admits a finite-sample Bayesian

interpretation.

3.1 Model

We observe a sample of bilateral data {Xkℓ}k ̸=ℓ ∈ X n(n−1), with X ⊆ RdX . I adopt a Bayesian

approach, which requires specifying both a model and a prior. I assume the following model:

Assumption 3 (Model). The data {Xkℓ}k ̸=ℓ are generated according to

C1, ..., Cn|h,PC
iid∼ PC (18)

Xij = h (Ci, Cj) , for Ci ̸= Cj, (19)

where the latent variables {Ck} are continuous and take values in C ⊆ RdC for finite dC and

h : C2 → X is some measurable function.

The parameters of the model for which I will later specify prior distributions are the

function h, which maps latent characteristics into observables, and the distribution PC , from

which those latent characteristics are drawn.

Example (Waugh, 2010). Recall that in Waugh (2010) we had Xkℓ = (λkℓ, λkk, τkℓ, pk, pℓ).

In this case, Ci is a vector of country-specific primitives (also called “exogenous variables”

or “fundamentals”) from which we can generate the observed data. As further outlined in

Appendix A.1, these primitives are trade costs, labor endowments and productivity param-

eters. Labor endowments and productivity parameters are all country-specific, so it remains

to find country-specific primitives that, when paired across countries, can generate trade
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costs. Trade costs are affected by, for example, distance, shared language, and shared colo-

nial history (Eaton and Kortum, 2002), all of which can be represented as functions of

country-specific primitives (location, language and colonial history). It follows that Ci could

contain, among other things, a country’s rental rate, labor endowment, productivity param-

eter, latitude, longitude, and dummy vectors of spoken languages and previous colonizers.

△

The observation Xij may also depend on general equilibrium effects, captured by a com-

mon random variable U . This results in the more general model:

U |h̃,PC ∼ U [0, 1]

C1, ..., Cn|h̃,PC , U
iid∼ PC

Xij = h̃ (U,Ci, Cj) , for Ci ̸= Cj.

The variable U can be thought of as capturing general equilibrium effects or system-wide in-

terdependencies. Following Graham (2020a), I condition on U and suppress it going forward.

Specifically, I define

h (Ci, Cj) ≡ h̃ (U,Ci, Cj) ,

so that the model reduces to the one in Assumption 3.

3.1.1 Theoretical Motivation for Model

To motivate Assumption 3, first note that it implies joint exchangeability of the data

{Xkℓ}k ̸=ℓ, as discussed in Section 2.1.2. Conversely, starting from joint exchangeability

and viewing the realized data as being sampled from a superpopulation, we can use the

Aldous-Hoover representation (Aldous, 1981; Hoover, 1979) to motivate Assumption 3.

Specifically, suppose the data {Xkℓ}k ̸=ℓ are sampled from the infinite random array

{Xij}i,j∈N,i ̸=j . That is, we obtain a random sample of size n from the natural numbers

N and only keep the corresponding rows and columns.11 Since the superpopulation is an

infinite random array, we have the following result from Aldous (1981):

Lemma 1 (Theorem 1.4 in Aldous, 1981). If for every permutation σ : N → N we have

{Xij}i,j∈N,i ̸=j

d
=
{
Xσ(i)σ(j)

}
i,j∈N,i ̸=j

,

11Alternatively, in the trade context, one can interpret the sampling thought experiment as a sequence
of economies or trade networks of increasing size, where for each n we observe the entire world economy
containing n countries.
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then there exists another array
{
X∗

ij

}
i,j∈N,i ̸=j

generated according to

X∗
ij = h̃AH (U,Ci, Cj, Dij) , (20)

for U, {Ci} , {Dij}
iid∼ U [0, 1] , such that

{Xij}i,j∈N,i ̸=j

d
=
{
X∗

ij

}
i,j∈N,i ̸=j

.

Here, U is a common “mixture variable” that is unidentifiable (Bickel and Chen, 2009;

Graham, 2020a), and it can again be thought of as capturing general equilibrium effects.

Conditioning on this random variable yields hAH (Ci, Cj, Dij) ≡ h̃AH (U,Ci, Cj, Dij). The

only difference between the models h (Ci, Cj) and h
AH (Ci, Cj, Dij) is then the idiosyncratic

component Dij. Although the Aldous-Hoover representation is more general and can hence

generate more distributions for the bilateral data, given observed data {Xkℓ}k ̸=ℓ with finite

sample size and arbitrarily flexible h, one can show that the models are observationally

equivalent. That is, we cannot reject h (Ci, Cj) relative to hAH (Ci, Cj, Dij) observing only

{Xkℓ}k ̸=ℓ.
12

3.2 Dirichlet Process Prior and Bayesian Interpretation

Having specified the model in Assumption 3, I assume the following prior on h and PC :

Assumption 4 (Prior). We have that h and PC are independently drawn according to

(h,PC) ∼ π (h) · π (PC) = π (h) ·DP (Q,α) . (21)

Note that π (h) is a distribution over functions, while π (PC) is a distribution over distri-

butions. Here, DP (Q,α) denotes a Dirichlet process, where Q is a probability measure on

C, referred to as the center measure, and α > 0 is a scalar known as the prior precision. The

12As an illustration, consider the gravity model Fij = exp
{
δorigi + δdestj − θ log τij + δij

}
as outlined in

Costinot and Rodŕıguez-Clare (2014). In this specification, δorigi and δdestj are origin and destination fixed
effects, respectively; θ is the trade elasticity; τij denotes bilateral trade costs; and δij is an idiosyncratic
preference shock orthogonal to the other components. Since in Equation (19), h may be non-symmetric and
Ci and Cj may be vector-valued, Assumption 3 is consistent with the data provided that country-specific
variables exist from which both τij and δij can be constructed.
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Dirichlet process prior implies that for any partition {A1, ..., AR} of C, we have

(PC (A1) , ....,PC (AR)) ∼ Dir (R;α ·Q (A1) , ..., α ·Q (AR)) .

Given the model in Assumption 3 and the prior in Assumption 4, we are interested in finding

the posterior of θ given the observed data {Xkℓ}k ̸=ℓ. The key result of this paper is that we

can interpret the draws of the Bayesian bootstrap procedure in Algorithm 1 as draws from

this posterior in the uninformative limit where α ↓ 0:

Theorem 1 (Finite-sample Bayesian interpretation). Under Assumptions 3 and 4, in the

uninformative limit α ↓ 0, if T is continuous with respect to the topology of weak convergence,

then the posterior on θ given the realized data {Xkℓ}k ̸=ℓ converges weakly to the distribution

induced by the Bayesian bootstrap procedure in Algorithm 1.

All proofs can be found in Appendix C. The proof of Theorem 1 proceeds in five steps.

First, I find the posterior on PC given the function h and draws {Ck} for a given center

measure Q and precision parameter α, and denote it by πα (PC |h, {Ck}). This step combines

the model in Equation (18) and the prior in Equation (21) and uses the conjugacy of the

Dirichlet process. Second, denoting with π0 the probability under the limiting posterior as

α ↓ 0, I find the limiting posterior on PC given the function h and draws {Ck}:

π0 (PC |h, {Ck}) = DP

(
n∑

k=1

1

n
· δCk

, n

)
. (22)

Note that this limiting posterior is proper and does not depend on the center measure

Q. Third, I use the model and properties of Dirichlet processes to find an expression for

π0
(
PXij

|h, {Ck}
)
, the limiting posterior on the marginal distribution of the observed data

given the latent variables {Ck} and the function h.

The first three steps all consider the thought experiment where we observe the latent

variables {Ck} and know the function h. However, in practice we do not observe the latent

variables {Ck} and do not know the function h; we only observe {Xkℓ}k ̸=ℓ. In the fourth

step I therefore find an expression for π0

(
PXij

| {Xkℓ}k ̸=ℓ

)
, the limiting posterior on the

distribution of the marginal distribution of the data given the observed data, which I show
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corresponds to

P∗
n,Xij

∼ π0

(
PXij

| {Xkℓ}k ̸=ℓ

)
⇒ P∗

n,Xij
=
∑
k ̸=ℓ

Wk ·Wℓ∑
s ̸=tWs ·Wt

· δXkℓ
, (W1, ...,Wn) ∼ Dir (n; 1, ..., 1) , (23)

which is exactly the distribution we saw in Algorithm 1. Lastly, since θ = T
(
PXij

)
, a limiting

posterior on the structural parameter, π0

(
θ| {Xkℓ}k ̸=ℓ

)
, is also induced and the conclusion

of Theorem 1 follows.

Concerning the Bayesian interpretation of the counterfactual prediction, note that—conditional

on the realized data {Xkℓ}k ̸=ℓ—the only remaining source of randomness arises from the pos-

terior distribution for the structural parameter. Then, combining Theorem 1 and Assumption

2, it follows that π0

(
γ| {Xkℓ}k ̸=ℓ

)
converges in distribution to the distribution induced by

the Bayesian bootstrap procedure in Algorithm 1 and Equation (17).13

3.2.1 Theoretical Motivation for Dirichlet Process Prior

Theorem 1 shows that the choice of the Dirichlet process prior implies a finite-sample

Bayesian interpretation for Algorithm 1. Moreover, by considering the limit as the prior

precision tends to zero, the procedure becomes agnostic to the choice of center measure Q

and prior on h. I further motivate this class of priors by showing it is uninformative in a

specific sense:

Definition 1 (Smoothing across events). Say the posterior π
(
PXij

| {Xkℓ}k ̸=ℓ

)
does not smooth

across events if for every measurable partition {B1, ..., BR} of the support X and

P∗
n,Xij

∼ π
(
PXij

| {Xkℓ}k ̸=ℓ

)
,

the distribution of (
P∗
n,Xij

(B1) , ...,P∗
n,Xij

(BR)
)
,

only depends on the indicators 1rkℓ = I {Xkℓ ∈ Br} for r = 1, ..., R.

If a posterior does not smooth across events, to calculate the posterior probability for

13While the latent variables {Ci} may differ across counterfactual scenarios, this does not affect inference
because the structural estimand θ is assumed to be fixed, and the estimand for the counterfactual prediction
γ is expressed as a function of the observed data {Xkℓ}k ̸=ℓ and θ. As a result, we do not need to model how
{Ci} would change under the counterfactual when quantifying uncertainty for θ or γ.
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a given event B, we can replace the data {Xkℓ}k ̸=ℓ with its binarized version {1kℓ}k ̸=ℓ for

1kℓ = I {Xkℓ ∈ B}.

Example (Waugh, 2010). In Waugh (2010), if the posterior does not smooth across events,

to compute the posterior probability that a bilateral observation drawn from PXij
lies in a

certain subset B ⊂ X , we can binarize the observations {Xkℓ}k ̸=ℓ into those that lie within

B and those that do not. For example, if we would want to predict the probability that a

new observation will have an own-country trade share λkk less than 0.5, we can binarize the

observations according to

1kℓ = I {Xkℓ ∈ B} = I {λkk < 0.5}

= I {k ∈ {Belgium, Benin, Ireland, Mali, Sierra Leone}} .

In particular, for computation of this posterior probability, all countries with own-country

trade shares above 0.5 are treated identically. For example, there is no distinction between

Denmark (λkk = 0.523) and the United States (λkk = 0.897). △

We have the following theorem:

Theorem 2 (Smoothing across events and Dirichlet process priors). Under Assumption 3 and

the generic priors

(h,PC) ∼ π (h) · π (PC) ,

we have:

1. If π (PC) is a Dirichlet process prior and the prior precision α is taken to zero, then

the resulting limiting posterior π0

(
PXij

| {Xkℓ}k ̸=ℓ

)
does not smooth across events for

all π (h).

2. There exists a prior π (h) such that the corresponding posterior π
(
PXij

| {Xkℓ}k ̸=ℓ

)
does

not smooth across events if and only if π (PC) is a Dirichlet process prior or a trivial

process.14

So if we want a prior for PC that ensures the posterior probability assigned to a set

depends only on the data observed within that set, then this mechanically leads us to use

14The three trivial processes, as discussed in Section 4.4 of Ghosal and van der Vaart (2017), are: (1)
π (PC) = ρ a.s., for a deterministic probability measure ρ, (2) π (PC) = δY , for a random variable Y ∼ ρ,
(3) π (PC) = Zδa + (1− Z) δb, for deterministic a, b ∈ C and an arbitrary random variable Z with values in
[0, 1].
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a Dirichlet process prior. Such a prior reflects a situation where we have no prior reason to

smooth across regions of X ; posterior beliefs about a region of the sample space are updated

solely based on whether observed data fall inside that region.

3.2.2 Limiting Marginal Prior for θ

I am taking a Bayesian approach by specifying a prior in Assumption 4. One might wonder

how informative Dirichlet process priors are. Specifically, it is of interest to plot the implied

limiting marginal prior π (θ) and compare it to the limiting posterior π0

(
θ| {Xkℓ}k ̸=ℓ

)
. By

comparing these two distributions, we can see how much information is drawn from the prior.

Theorem 1 shows that the relevant posterior corresponds to an uninformative limit of

posteriors for any choice of Q, which implies that there is not a unique well-defined implied

limiting marginal prior for θ. In this subsection, I consider a specific choice for the center

measure Q and a class of estimators for which we can plot the limiting distribution of π (θ).

Concretely, I constrain the Dirichlet process prior in Equation (21) to

PC ∼ DP

(
n∑

k=1

1

n
· δCk

, α

)
. (24)

This specific choice of the center measure Q implies that mass is supported only on the

latent variables {Ck}.15 This is also the case for the posterior in Equation (22), which can

be recovered by setting α = n. We then have the following result:

Theorem 3 (Limiting marginal prior). Under Assumption 3 and Assumption 8 in Appendix

C.3, and using the Dirichlet process prior as in Equation (24), if θ̂ is of the form

θ̂ = T
(
Pn,Xij

)
= χ

(
EPn,Xij

[ϱ (Xij)]
)
,

for known functions ϱ : X → R and χ : R → Θ, and χ (·) is continuous at ϱ (Xkℓ) for all

k ̸= ℓ, then, as α ↓ 0, the implied marginal prior π (θ) converges weakly to

π∞ (θ) =
2

n (n− 1)

∑
k>ℓ

δχ(ϱ(Xkℓ))+χ(ϱ(Xℓk))
2

.

15One can generalize this to a center measure of
∑n

k=1 ωkδCk
for weights {ωk} that sum up to 1. Then

the assumption that mass is supported only on {Ck} becomes less restrictive as the number of units n grows
large. In particular, Andrews and Shapiro (2024) shows that if C is a Polish space and PC has full support,
then for every P ∈ ∆(C) and almost every sequence of draws {C1, C2, ...} from PC there exists a sequence of
weights {ωn

k } such that
∑n

k=1 ω
n
k δCk

converges weakly to P as n→ ∞.
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Theorem 3 shows how to characterize the limiting marginal prior for the class of estimators

that can be written as functions of means. For example for the case of simple OLS without

an intercept as in the running example and the application in Section 6.1, continuity of χ

is satisfied. For estimators that cannot be written in this way, Appendix D presents an

algorithm for plotting proper priors along the limit sequence.

Example (Waugh, 2010). In Figure 2, I plot the bootstrap posterior and the limiting marginal

prior using Theorem 3, where we have

ϱ (Xij) =

 log
(
τij

pj
pi

)2
− log

(
τij

pj
pi

)
· log

(
λij

λii

)
 , χ

((
a1

a2

))
=
a2
a1
,

and continuity of χ is satisfied. We observe that the limiting marginal prior π∞ is much

flatter than the bootstrap posterior π0. Its diffuse shape reflects weak prior information,

allowing for a wide range of plausible values for the productivity parameter. △

Figure 2: Smoothed limiting posterior and marginal prior for productivity parameter in
Waugh (2010).
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4 Theory for Asymptotic Interpretation

In this section I provide conditions on θ̂ that guarantee asymptotic validity of the proposed

Bayesian bootstrap procedure. I again consider misspecification-robust uncertainty quantifi-

cation for over-identified GMM as a special case.

4.1 Frequentist Uncertainty Quantification for the Structural Parameter

4.1.1 Sampling Thought Experiment

In Section 3.1.1 I introduced the thought experiment that the data {Xkℓ}k ̸=ℓ are sampled

from a superpopulation. In this section I will state this as an assumption:

Assumption 5 (Sampling thought experiment). The infinite random array {Xij}i,j∈N,i ̸=j is

jointly exchangeable, so that for every permutation σ : N → N we have

{Xij}i,j∈N,i ̸=j

d
=
{
Xσ(i)σ(j)

}
i,j∈N,i ̸=j

.

The data {Xkℓ}k ̸=ℓ are generated by taking the first n rows and columns.

Assumption 5 implies that as we sample more observations from this superpopulation,

the resulting data {Xkℓ}k ̸=ℓ always will be jointly exchangeable, and that all observations

will have the same marginal distribution, denoted by PXij
.

4.1.2 Asymptotic Bootstrap Validity

The goal of this section is to prove asymptotic validity of the bootstrap procedure in Algo-

rithm 1 for a given estimator

θ̂ = T
(
Pn,Xij

)
= T

(∑
k ̸=ℓ

1

n (n− 1)
· δXkℓ

)
. (25)

Going forward, let P∗
n,Xij

be a given drawn distribution from π0

(
PXij

| {Xkℓ}k ̸=ℓ

)
, so that

P∗
n,Xij

=
∑
k ̸=ℓ

Wk ·Wℓ∑
s ̸=tWs ·Wt

· δXkℓ
, (W1, ...,Wn) ∼ Dir (n; 1, ..., 1) .

Definition 2 (Asymptotic bootstrap validity). The bootstrap procedure is asymptotically valid

for the estimator θ̂ as defined in Equation (25) if, conditional on the data {Xkℓ}k ̸=ℓ and al-
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most surely,
√
n
(
T
(
P∗
n,Xij

)
− T

(
Pn,Xij

))
and

√
n
(
T
(
Pn,Xij

)
− T

(
PXij

))
converge in dis-

tribution to the same mean zero normal random variable.

The main appeal of bootstrap validity for θ̂ is that it implies asymptotic validity of

confidence intervals based on the bootstrap, because if n grows large, we can approximate

the normal distribution to which
√
n
(
θ̂ − θ

)
converges in distribution sufficiently well.16

To show asymptotic validity of the bootstrap for a structural estimator, I will take a

two-step approach. First I show convergence of the empirical process, and then use the

functional delta method to argue validity of the bootstrap for certain classes of estimators.

Let PXij
f denote EPXij

[f (Xij)], and define Pn,Xij
f and P∗

n,Xij
f analogously. In this

section I will focus on estimators of the form T
(
Pn,Xij

)
= φ

(
Pn,Xij

f
)
. It follows that the

relevant empirical processes, defined on a class of real-valued functions F , are

Gnf =
√
n
{
Pn,Xij

f − PXij
f
}

G∗
nf =

√
n
{
P∗
n,Xij

f − Pn,Xij
f
}
,

for f ∈ F . We want to show weak convergence over ℓ∞ (F) of both Gn and G∗
n to the same

centered Gaussian process G, where the convergence of G∗
n holds conditional on the data

{Xkℓ}k ̸=ℓ and outer almost surely, for ℓ∞ (F) the set of bounded functions on F . A formal

definition of weak convergence is given in Definition 1.3.3 in Van Der Vaart and Wellner

(1996). To ensure this convergence, we require some regularity conditions on the function

class F .

Assumption 6 (Regularity conditions on F). Let F ⊆ X R be a measurable class of functions

such that:

(i) F is permissible (see page 196 in Pollard, 1984) and admits a positive envelope F with

PXij
F 2 <∞.

(ii) We have non-degeneracy, meaning that the covariance kernel is positive for all elements

of F :

K (f1, f2) = Cov (f1 (X12) + f1 (X21) , f2 (X12′ ) + f2 (X2′1)) > 0 ∀f1, f2 ∈ F .

(iii) There exist 0 < c, v < ∞ such that for every ϵ > 0 and probability measure Q with

16The definition of asymptotic bootstrap validity is based on Theorem 23.9 in Van der Vaart (2000).
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QF 2 <∞, we have

N
(
ϵ ∥F∥L2(Q) ,F , ∥·∥L2(Q)

)
≤ cϵ−v.

Condition (i) captures regularity condition on the function class. Permissibility is a mild

measure-theoretic regularity condition that ensures function classes meet minimal require-

ments for measurability and integration, making them suitable for empirical process analysis.

The existence of an envelope function F for a class F means that |f (x)| ≤ F (x) for all f ∈ F
and all x ∈ X .

Non-degeneracy in condition (ii) ensures that the limiting processes of Gn and G∗
n are

Gaussian with non-zero variance. Degeneracy may arise, for instance, if the data {Xkℓ}k ̸=ℓ

are in fact i.i.d, in which case the limiting process of Gn is a Gaussian chaos process. In

such settings, G∗
n will not converge to the correct (non-Gaussian) limit under standard boot-

strap procedures. Alternative bootstrap methods have been developed to handle degeneracy,

including those proposed by Hušková and Janssen (1993), Menzel (2021) and Han (2022).

Condition (iii) bounds the complexity of F . Here, the covering number N
(
ϵ,F , ∥·∥L2(Q)

)
is the minimal number of L2 (Q)-balls of radius ε needed to cover F . This condition is for

example satisfied for VC classes of functions by Lemma 4.4 in Alexander (1987).17

Remark (Smooth functionals of empirical cdf). As an example, consider the class of estima-

tors that are smooth functionals of the empirical cdf Hn,Xij
and suppose for exposition that

Xij is a scalar. For some function φ, we have θ̂ = φ
(
Hn,Xij

)
, θ = φ

(
HXij

)
and the relevant

function class is

Fcdf ≡ {u 7→ I {u ≤ x} : x ∈ R} .

As an envelope function we can take the constant function Fcdf ≡ 1. The covariance kernel

is

Kcdf (x, y) = Cov (I {X12 ≤ x}+ I {X21 ≤ x} , I {X12′ ≤ y}+ I {X2′1 ≤ y}) , (26)

which we require to be non-zero for all x, y ∈ R. Lastly, we know Fcdf satisfies condition (iii)

in Assumption 6 from Example 19.16 in Van der Vaart (2000). △

We have the following result for the empirical processes:

Theorem 4 (Weak convergence of empirical processes). If F satisfies Assumption 6, then

we have weak convergence over ℓ∞ (F) of both Gn and G∗
n to the same centered Gaussian

17Alternatively, one could assume that F has polynomial discrimination, defined on page 17 of Pollard
(1984). By Lemma II.25 in Pollard (1984), this is a sufficient condition for condition (iii). Also, finite VC-
dimension implies polynomial discrimination due to the Sauer-Shelah lemma, see page 275 in Van der Vaart
(2000).
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process G, where the convergence of G∗
n holds conditional on the data {Xkℓ}k ̸=ℓ and outer

almost surely.

Note that the convergence rate is
√
n despite having a sample size of n (n− 1), as is

also the case for non-degenerate U-statistics. The proof of Theorem 4 builds on results from

Arcones and Giné (1993) and Zhang (2001), which present a uniform CLT for U-processes

and a bootstrap uniform CLT for U-processes, respectively.

Once we have established convergence of the empirical process, we can appeal to the

functional delta method for the bootstrap to argue asymptotic validity of the bootstrap for

a given estimator. We require the estimator to be sufficiently smooth:

Assumption 7 (Smoothness). Suppose θ̂ is of the form T
(
Pn,Xij

)
= φ

(
Pn,Xij

f
)
for f ∈ F ,

where φ : ℓ∞ (F) 7→ Θ with derivative φ
′
. The function φ is Hadamard differentiable at

PXij
f tangentially to a subspace ℓ∞0 (F) ⊂ ℓ∞ (F).

The precise definition of Hadamard differentiability is given in Section 20.2 of Van der

Vaart (2000). Section 20.3 of Van der Vaart (2000) gives examples of Hadamard differentiable

functions.

Remark (Smooth functionals of empirical cdf). Consider again the class of estimators that

are smooth functionals of the empirical cdf, so that θ̂ = φ
(
Hn,Xij

)
. For Assumption 7 to

hold we require φ to be Hadamard differentiable tangentially to a subspace ℓ∞0 (Fcdf). For

example, from Lemma 21.3 in Van der Vaart (2000) we know this is the case for the empirical

quantiles under mild differentiability conditions on HXij
. △

Application of the functional delta method for the bootstrap (Theorem 23.9 in Van der

Vaart, 2000) then yields the following theorem:

Theorem 5 (Bootstrap validity). Under Assumption 5, if θ̂ satisfies Assumption 7 for a class

F that satisfies Assumption 6, then the bootstrap procedure in Algorithm 1 is asymptotically

valid for θ̂.

From the remarks throughout this section, we then have the following corollary:

Corollary 1 (Asymptotic bootstrap validity for smooth functionals of empirical cdf). The

bootstrap procedure in Algorithm 1 is asymptotically valid for estimators of the form θ̂ =

φ
(
Hn,Xij

)
if Kcdf (x, y) in Equation (26) is positive for all x, y ∈ R and φ is Hadamard

differentiable tangentially to a subspace ℓ∞0 (Fcdf).
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It will be useful to gather sufficient conditions for Assumptions 6 and 7 for Z-estimators

in a corollary.

Corollary 2 (Asymptotic bootstrap validity for Z-estimators). Suppose θ̂ and θ solve

0 = Ψn (ϑ) ≡ sup
η∈H

|Ψn (ϑ) (η)| = sup
η∈H

∣∣Pn,Xij
νϑ,η
∣∣

0 = Ψ (ϑ) ≡ sup
η∈H

|Ψ(ϑ) (η)| = sup
η∈H

∣∣PXij
νϑ,η
∣∣ ,

and suppose the following conditions hold:

(i) Ψ : Θ 7→ RL is uniformly norm-bounded over Θ, and satisfies Ψ(θ) = 0.

(ii) Ψ is Fréchet differentiable at θ with continuously invertible derivative Ψ̇θ.

(iii) sup
η∈H

|Ψ(θw)| → 0 implies ∥θw − θ∥ → 0 for every sequence {θw} in Θ.

(iv) Ψn has at least one zero for all n large enough, outer almost surely (see Section 18.2

in Van der Vaart (2000) for a formal definition).

(v) The limit of ϑ 7→
√
n (Ψn (ϑ)−Ψ(ϑ)) is almost surely continuous at θ.

(vi) The function class FZ ≡ {νϑ,η : (ϑ, η) ∈ Θ×H} satisfies Assumption 6.

Then the bootstrap procedure in Algorithm 1 is asymptotically valid for θ̂.

4.1.3 Special Case: Misspecification-Robust Uncertainty Quantification for GMM

Following Imbens (1997), the two estimation steps of the two-step GMM estimator from

Section 2.2.1 can be combined into a single just-identified system,

ϕ
(
Xij; θ

1−GMM, θ2−GMM,m, vec {Ω} , vec {G1} , vec {G2}
)

=



vec
{
G1 − ∂

∂θ
ψ
(
Xij; θ

1−GMM
)}

G
′
1ψ
(
Xij; θ

1−GMM
)

ψ
(
Xij; θ

1−GMM
)
−m

vec
{
Ω−

[
ψ
(
Xij; θ

1−GMM
)
−m

] [
ψ
(
Xij; θ

1−GMM
)
−m

]′}
vec
{
G2 − ∂

∂θ
ψ
(
Xij; θ

2−GMM
)}

G
′
2Ωψ

(
Xij; θ

2−GMM
)


,
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where

EPXij

[
ϕ
(
Xij; θ

1−GMM, θ2−GMM,m, vec {Ω} , vec {G1} , vec {G2}
)]

= 0. (27)

Note that the moment equations in Equation (27) hold regardless of whether the moments

equations in Equation (14) hold for some θ ∈ Θ.18 Importantly, running this just-identified

GMM procedure is numerically equivalent to running the two-step GMM procedure. Since

the just-identified GMM estimator is a Z-estimator, we can apply Corollary 2 with

H =
{
1, ..., 2LK + 2K + L2

}
νϑ,η (Xij) = ϕη (Xij;ϑ) ,

and asymptotic validity of the bootstrap in Algorithm 2 amounts to checking relevant con-

ditions on the moment functions.

Example (Waugh, 2010). Given the moment condition in Equation (15), we should check

whether

ψ (Xij;ϑ) =

(
log

(
λij
λii

)
+ ϑ log

(
τij
pi
pj

))
log

(
τij
pi
pj

)
is Fréchet differentiable in ϑ. This is trivially the case because ψ (Xij; ·) is linear. The

complexity condition (iii) in Assumption 6 is also satisfied for this just-identified case with

a single linear moment function. △

4.2 Frequentist Uncertainty Quantification for the Counterfactual

Recall the estimand γ = g
(
{Xkℓ}k ̸=ℓ , θ

)
, which is random because it depends on the data

{Xkℓ}k ̸=ℓ. Given that θ̂ is approximately asymptotically normally distributed, we can use a

uniform delta method-type result (see for example Chapter 3.4 in Van der Vaart, 2000) to

find a valid confidence interval:

Theorem 6 (Delta method for random object). Suppose we have
√
n
(
θ̂ − θ

)
d
≈ N (0,Σ), and

we can consistently estimate its asymptotic variance by Σ̂. Then, for G (·) = ∇θg
(
{Xkℓ}k ̸=ℓ , ·

)
,

if we have

∀c > 0, sup
θ̃:∥θ̃−θ∥≤ c√

n

∣∣∣G(θ̃)−G (θ)
∣∣∣ p→ 0, (28)

18Imbens (1997) also shows that iterated GMM estimator (Hansen and Lee, 2021) can be written as a
just-identified GMM estimator.
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a valid confidence interval for γ is given by[
γ̂ ± Φ−1 (1− α/2) ·

√
1

n
G
(
θ̂
)2

Σ̂

]
.

This implies that reporting the quantiles of the bootstrap draws in Equation (17) is an

asymptotically valid approach to uncertainty quantification for the counterfactual prediction

in a frequentist sense.

5 Extensions

The Bayesian bootstrap procedure in Algorithm 1 can easily be adapted to accommodate

various extensions. In this section I consider two such extensions and provide the corre-

sponding changes to the bootstrap procedure, the model and the priors. In Appendix E I

additionally discuss multiway clustering and conditional exchangeability.

5.1 Polyadic data

The data do not necessarily have to be dyadic. For example in Section 6.1 we see that the

estimation in Caliendo and Parro (2015) corresponds to a triadic regression.

For the general case with polyadic data of order P , denote by KP the set of all P -tuples

of {1, ..., n} without repetition. In this case, we would sample
(
V

(b)
1 , ..., V

(b)
n

)
iid∼ Exp (1), and

compute bootstrap draws according to

θ̂∗,(b) = T

(∑
k∈KP

V
(b)
k1

· ... · V (b)
kP∑

s∈KP
V

(b)
s1 · ... · V (b)

sP

· δXk

)
.

The priors from Assumption 4 do not change, and in the model from Assumption 3 only the

link function changes, so that we have

C1, ..., Cn|h,PC
iid∼ PC

Xi = h (Ci1 , ..., CiP ) , for Ci1 ̸= ... ̸= CiP .
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5.2 Missing data

When we observe the full matrix of bilateral observations, we observe dyads indexed by

the elements of some index set Inon−diag =
{
(i, j) ∈ {1, ..., n}2 : i ̸= j

}
. However, sometimes

non-diagonal observations are missing. In quantitative trade and spatial models, the most

common reason for these missing observations is that zero flows are omitted, as is the case

for the running example based on Waugh (2010) and in the application based on Caliendo

and Parro (2015) in Section 6.1.

To illustrate how to adapt the procedure of Algorithm 1, suppose that we only observe

dyads in the set I ⊂ Inon−diag.We would then sample
(
V

(b)
1 , ..., V

(b)
n

)
iid∼ Exp (1), and compute

bootstrap draws according to

θ̂∗,(b) = T

 ∑
(k,ℓ)∈I

V
(b)
k · V (b)

ℓ∑
(s,t)∈I V

(b)
s · V (b)

t

· δXkℓ

 .

The model in Assumption 3 can be adapted by assuming that the function h maps to an

empty set if (Ci, Cj) corresponds to a tuple of indices (i, j) that was not observed. We then

have

C1, ..., Cn|h,PC
iid∼ PC

Xij = h (Ci, Cj) ∈ X ∪ ∅, for Ci ̸= Ci and h (Ci, Cj) ̸= ∅.

The priors from Assumption 4 do not change.19

6 Applications

In this section I discuss the applications in Caliendo and Parro (2015) and Artuç, Chaudhuri,

and McLaren (2010). For both, the number of interacting units is small, which makes the

Bayesian bootstrap procedure an appealing approach for uncertainty quantification.

19If we observe a random sample of dyads, we could view the index set I as random and consider priors
on h and PC conditional on this index set, so that I ∼ π (I) and (h,PC) |I ∼ π (h|I) · DP (QI , α) . The

model equations then change to C1, ..., Cn|h,PC , I
iid∼ PC and Xij = h (Ci, Cj), for (i, j) ∈ I. However, the

corresponding bootstrap distribution will not change, so using such a different underlying Bayesian model
has no practical implications.
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6.1 Application 1: Caliendo and Parro (2015)

6.1.1 Parameter Estimation

Caliendo and Parro (2015) introduces a new method to estimate trade elasticities. Denoting

with F s
ij and t

s
ij the trade flow and tariff rate between country i and j in sector s, respectively,

the method amounts to running the triadic regressions

log

(
F s
ijF

s
jrF

s
ri

F s
jiF

s
rjF

s
ir

)
= −θs log

(
tsijt

s
jrt

s
ri

tsjit
s
rjt

s
ir

)
+ εsijr,

with the identification restriction that the random disturbance term εsijr is orthogonal to

the regressor. The number of interacting units n ranges between 11 and 15 across different

sector-specific regressions. Using insights from Section 5, the bootstrap procedure can easily

be adapted to this triadic setting, where now for each bootstrap draw we compute

θ̂s,∗,(b) = T s

 ∑
(k,ℓ,m)∈Is

V
(b)
k · V (b)

ℓ · V (b)
m∑

(t,u,v)∈Is V
(b)
t · V (b)

u · V (b)
v

· δXs
kℓm

 .

Note that Is is a strict subset of
{
(i, j, r) ∈ {1, ..., n}3 : i ̸= j ̸= r

}
, because Is only con-

tains observations with
F s
kℓF

s
ℓmF s

mk

F s
ℓkF

s
mℓF

s
km

> 0. Table 4 gives the corresponding 95% Bayesian

credible intervals and 95% confidence intervals constructed using the point estimates and

heteroskedastic-robust standard errors as reported in the paper. Figure 3 plots the corre-

sponding posterior distributions and implied normal distributions. It is noteworthy that

many of the credible intervals include zero, which violates the model assumption that θs > 0

for all sectors s, since θs represents a Fréchet shape parameter and must be strictly pos-

itive. Appendix B presents a data-calibrated simulation exercise, which highlights that

using heteroskedastic-robust standard errors for uncertainty quantification results in under-

coverage.

Figure 3 highlights that, using the Bayesian bootstrap procedure, we do not have to ex

ante think about which cases will result in Gaussian posteriors. For example the posterior

for the elasticity for paper looks approximately normal, but the posterior for the elasticity

for mining is skewed with a heavy right tail—indicating greater uncertainty about large

elasticity values than about small ones.
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Point
estimate

95% confidence
interval based on

Caliendo and Parro (2015)

95% Bayesian
bootstrap
credible
interval

Agriculture, n = 15 9.11 [5.17, 13.05] [-4.05, 25.63]
Mining, n = 13 13.53 [6.34, 20.73] [0.69, 42.35]
Food, n = 15 2.62 [1.43, 3.81] [-1.26, 6.83]
Textile, n = 14 8.10 [5.58, 10.61] [0.52, 16.76]
Wood, n = 12 11.50 [5.87, 17.12] [-11.30, 22.88]
Paper, n = 14 16.52 [11.33, 21.71] [1.70, 31.32]

Petroleum, n = 12 64.44 [33.84, 95.04] [-6.41, 128.87]
Chemicals, n = 14 3.13 [-0.37, 6.62] [-8.49, 13.72]
Plastic, n = 13 1.67 [-2.69, 6.03] [-12.65, 14.01]
Minerals, n = 14 2.41 [-0.72, 5.55] [-3.17, 9.47]

Basic Metals, n = 14 3.28 [-1.64, 8.19] [-11.32, 15.91]
Metal products, n = 14 6.99 [2.82, 11.15] [-5.75, 19.46]

Machinery, n = 14 1.45 [-4.04, 6.93] [-12.75, 17.24]
Office, n = 14 12.95 [4.07, 21.83] [-7.71, 36.25]

Electrical, n = 14 12.91 [9.70, 16.12] [0.20, 21.37]
Communication, n = 11 3.95 [0.48, 7.43] [-5.25, 10.98]

Medical, n = 14 8.71 [5.65, 11.78] [-0.66, 26.37]
Auto, n = 12 1.84 [0.04, 3.64] [-3.80, 5.48]

Other Transport, n = 14 0.39 [-1.73, 2.51] [-5.84, 5.67]
Other, n = 13 3.98 [1.86, 6.11] [-2.11, 9.68]

Table 4: Uncertainty quantification for the benchmark estimates (which remove the countries
with the lowest 1% share of trade for each sector) in Table 1 of Caliendo and Parro (2015).

6.1.2 Counterfactual Prediction

The main counterfactual question in Caliendo and Parro (2015) concerns the effects of the

NAFTA trade agreement on welfare in Mexico, Canada and the United States. These welfare

predictions, which depend on both the data and the estimated trade elasticities, are reported

in the abstract and in Table 2 of Caliendo and Parro (2015) without any uncertainty quan-

tification. In Table 5, I reproduce these results and include 95% Bayesian credible intervals.

Figure 4 displays the corresponding posterior distributions. Implementation details and ad-

ditional results are provided in Appendix F.1.

The credible intervals and posterior distributions show asymmetry in the distribution of

welfare changes, shifting probability mass away from zero relative to Gaussian posteriors.

Furthermore, we observe there is much more uncertainty around the welfare effect for Mexico

than around the welfare effects for Canada and the United States. However, since none of
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Figure 3: Smoothed densities of the benchmark estimates (which remove the countries with
the lowest 1% share of trade for each sector) in Table 1 of Caliendo and Parro (2015).
“C&P” corresponds to the normal approximation as implied by the standard errors reported
in Caliendo and Parro (2015), and “BB” corresponds to the smoothed Bayesian bootstrap
posterior.

the credible intervals include zero, the direction of the effect is clearly determined. This

is also true for the ranking of welfare effects among the three countries, since for none of

the bootstrap draws the ranking is different from the ranking corresponding to the point

estimates.

6.2 Application 2: Artuç, Chaudhuri, and McLaren (2010)

6.2.1 Parameter Estimation

Artuç, Chaudhuri, and McLaren (2010) uses over-identified GMM to estimate the mean and

standard deviation of workers’ switching cost, denoted with µ and σ, respectively.20 The

data consists of a panel of dyadic data across industries. There are n = 6 industries and

T = 23 years. Towards uncertainty quantification, Artuç, Chaudhuri, and McLaren (2010)

20To be precise, idiosyncratic moving shocks are assumed to follow an extreme-value distribution indexed
by parameter σ, which implies a variance of workers’ switching cost of π2σ2/6.
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Welfare effect

Mexico 1.31% [0.65%, 2.51%]
Canada -0.06% [-0.10%, -0.02%]
U.S. 0.08% [0.07%, 0.11%]

Table 5: Bayesian uncertainty quantification for welfare effects as in Table 2 of Caliendo
and Parro (2015). The numbers in brackets correspond to 95% Bayesian bootstrap credible
intervals.

Figure 4: Smoothed Bayesian bootstrap posterior distributions for welfare effects as in Table
2 of Caliendo and Parro (2015).

ignores the dependence across years and industries and uses the standard GMM asymptotic

variance formula. Implicitly, this imposes the assumption that all 690 (= n · (n− 1) · T )
observations are exchangeable. The corresponding moment function is

ψACM (Xij,t; θ) =
(
Yij,t −

(
ζ−1
σ
µ ζ

σ
ζ
)
Rij,t

)
Zij,t, (29)
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with

Yij,t = logmij,t − logmii,t

Rij,t =
(

1 wj,t+1 − wi,t+1 logmij,t+1 − logmjj,t+1

)′

Zij,t =
(

1 wj,t−1 − wi,t−1 logmij,t−1 − logmjj,t−1

)′

.

Here, mij,t denotes the fraction of the labor force in industry i at time t that chooses to move

to industry j and wi,t denotes the wage in industry i at time t. The parameter ζ denotes the

discount factor, which is fixed ex ante. I focus on the estimates for µ and σ in Panel IV of

Table 3 in Artuç, Chaudhuri, and McLaren (2010), which fixes ζ = 0.97 and corresponds to

the authors’ preferred specification.

The authors use iterated GMM rather than two-step GMM, and rely on a different weight

matrix than the centered weight matrix discussed in Section 2.2.1. Specifically, their weight

matrix relies on the assumption that the residual eij,t (θ) ≡ Yij,t−
(

ζ−1
σ
µ ζ

σ
ζ
)
Rij,t is in-

dependent of the instrument Zij,t for each dyad-year-observation (ij, t). Their full procedure

is summarized in Algorithm 3.

Algorithm 3 Iterated GMM procedure used by Artuç, Chaudhuri, and McLaren (2010)

1. Set Ω̂(0) = I3.

2. Until convergence, compute

θ̂(w+1) = argmin
ϑ∈Θ

[
1

n (n− 1)T

∑
k ̸=ℓ,s

ekℓ,s (ϑ)Zkℓ,s

]′

Ω̂(w)

[
1

n (n− 1)T

∑
k ̸=ℓ,s

ekℓ,s (ϑ)Zkℓ,s

]
Ω̂(w+1) = ΩACM

(
θ̂(w+1)

)
≡

({
1

n (n− 1)T

∑
k ̸=ℓ,s

ekℓ,s

(
θ̂(w+1)

)2}{ 1

n (n− 1)T

∑
k ̸=ℓ,s

Zkℓ,sZ
′

kℓ,s

})−1

.

3. Denote with θ̂ and Ω̂ the converged versions.

4. For inference, report standard errors obtained from the variance covariance matrix

Σ̂ = 1
n(n−1)T

(
Ĝ

′
Ω̂Ĝ
)−1

, with Ĝ = 1
n(n−1)T

∑
k ̸=ℓ,s

∂ekℓ,s(θ̂)Zkℓ,s

∂θ
.

Exchangeability across all observations is unlikely to hold because of dependence across

time and industries. Additionally, one might want to use a weight-matrix that does not rely
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on the assumption that eij,t (θ) and Zij,t are independent for each (ij, t). Hence, my preferred

approach assumes exchangeability across industries, allowing arbitrary dependence across

years, and uses the centered weight matrix from Section 2.2.1. This preferred procedure is

summarized in Algorithm 4.

Algorithm 4 Bayesian bootstrap procedure for iterated GMM.

1. For each bootstrap draw b = 1, ..., B:

(a) Sample
(
V

(b)
1 , ..., V

(b)
6

)
iid∼ Exp (1).

(b) Compute ω
(b)
kℓ,s = V

(b)
k · V (b)

ℓ /
(∑

u̸=v V
(b)
u · V (b)

v

)
for k, ℓ = 1, ..., n.

(c) Denote

P∗,(b)
n,Xij

=
∑
k ̸=ℓ

ω
(b)
kℓ · δXkℓ

=
∑
k ̸=ℓ

ω
(b)
kℓ · δ{Xkℓ,s}T

s=1

.

ψ (Xij;ϑ) =
1

T

T∑
t=1

eij,t (ϑ)Zij,t

ψ(b)
n (ϑ) = EP∗,(b)

n,Xij

[ψ (Xij;ϑ)] =
∑
k ̸=ℓ

ω
(b)
kℓ · 1

T

T∑
t=1

ekℓ,t (ϑ)Zkℓ,t.

(d) Set Ω̂
∗,(b)
(0) = I3.

(e) Until convergence, compute

θ̂
∗,(b)
(w+1) = argmin

ϑ∈Θ
ψ(b)
n (ϑ)

′
Ω̂

∗,(b)
(w) ψ

(b)
n (ϑ)

Ω̂
∗,(b)
(w+1) = EP∗,(b)

n,Xij

[{
ψ
(
Xij; θ̂

∗,(b)
(w+1)

)
− ψ(b)

n

(
θ̂
∗,(b)
(w+1)

)}{
ψ
(
Xij; θ̂

∗,(b)
(w+1)

)
− ψ(b)

n

(
θ̂
∗,(b)
(w+1)

)}′]−1

.

(f) Denote with θ̂∗,(b) and Ω̂∗,(b) the converged versions.

2. Report the quantiles of interest of
{
θ̂∗,(1), ..., θ̂∗,(B)

}
.

The use of a different weight matrix implies a different pseudo-true parameter, and dif-

ferent exchangeability assumptions will yield different uncertainty quantification. However,

since my procedure does not rely on correction specification, I can provide valid estimation

and uncertainty quantification for the pseudo-true parameter corresponding to any given

weight matrix and exchangeability assumption. Given this discussion and using iterated

GMM throughout, I consider four approaches to estimation and uncertainty quantification.
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The first approach replicates the results from Artuç, Chaudhuri, and McLaren (2010)

using Algorithm 3. The second and third approaches are intermediate cases between this

first approach and my preferred approach. The second approach still assumes exchange-

ability across all observations and uses the weight matrix ΩACM (·) from Algorithm 3, but

uses a Bayesian bootstrap procedure instead of GMM asymptotics. The third approach uses

ΩACM (·), assumes exchangeability across industries, and uses a Bayesian bootstrap proce-

dure. Lastly, the fourth approach implements my preferred procedure as outline in Algorithm

4, which uses a Bayesian bootstrap procedure with a centered weight matrix, and assumes

exchangeability across industries.

The resulting 95% confidence intervals and credible intervals are given in Table 6. The

corresponding implied normal distributions and posterior distributions are plotted in Fig-

ure 5. The posterior distributions for both the mean and standard deviation of workers’

switching costs are non-normal and exhibit heavy right tails, indicating substantial uncer-

tainty—particularly regarding the possibility of large switching costs. Implementation details

and extra results can be found in Appendix F.2.

Mean
Standard
deviation

Artuç et al (2010):
weight matrix ΩACM (·),

exchangeability across (ij, t),
GMM asymptotics

6.56
[3.07, 10.06]

1.88
[1.05, 2.72]

Intermediate case 1:
weight matrix ΩACM (·),

exchangeability across (ij, t),
Bayesian bootstrap

6.56
[4.02, 13.79]

1.88
[1.25, 4.13]

Intermediate case 2:
weight matrix ΩACM (·),

exchangeability across industries,
Bayesian bootstrap

6.56
[4.49, 10.09]

1.88
[1.35, 2.84]

Preferred approach:
centered weight matrix,

exchangeability across industries,
Bayesian bootstrap

5.98
[4.31, 10.13]

1.93
[1.35, 3.04]

Table 6: Uncertainty quantification for Panel IV in Table 3 in Artuç, Chaudhuri, and
McLaren (2010) for ζ = 0.97. For the first row the numbers in brackets correspond to
95% confidence intervals. For the other rows, the numbers in brackets correspond to 95%
Bayesian bootstrap credible intervals.
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Figure 5: Distributions for estimators in Panel IV in Table 3 in Artuç, Chaudhuri, and
McLaren (2010) for ζ = 0.97. “Artuç et al (2010)” corresponds to the normal approximation
based on the analytic approach using the weight matrix ΩACM (·) from Algorithm 3 and
assuming exchangeability across all observations, “Intermediate case 1” corresponds to the
smoothed Bayesian bootstrap posterior using the weight matrix ΩACM (·) from Algorithm 3
and assuming exchangeability across all observations, “Intermediate case 2” corresponds to
the smoothed Bayesian bootstrap posterior using the weight matrix ΩACM (·) from Algorithm
3 and assuming exchangeability across industries, and “Preferred approach” corresponds to
the smoothed Bayesian bootstrap posterior using a centered weight matrix and assuming
exchangeability across industries.

6.2.2 Counterfactual Prediction

The estimated mean and standard deviation of the moving cost are then used for a simulation

exercise. The counterfactual scenario of interest is a sudden liberalization of the manufac-

turing sector. The main economic quantities of interest are the changes in the employment

share of the manufacturing sector, the wage of the manufacturing sector, and the expected

discounted lifetime utility. These counterfactual predictions are reported in Figures 3, 4 and

5 in Artuç, Chaudhuri, and McLaren (2010) without any uncertainty quantification. The

95% confidence intervals and credible intervals for these quantities, under the four sets of

assumptions discussed above, are given in Table 7. For uncertainty quantification under

the assumptions made in Artuç, Chaudhuri, and McLaren (2010), I use both a standard

41



delta method and an asymptotic bootstrap. For the latter, I draw parameter vectors from

the normal distribution implied by Algorithm 3, compute the corresponding counterfactual

prediction, and report the quantiles of the resulting bootstrap distribution. The asymptotic

validity of both methods follows from Theorem 6.

Change in
employment share

Change
in wage

Change
in utility

Delta method:
weight matrix ΩACM (·),

exchangeability across (ij, t),
GMM asymptotics

-0.088
[-0.113, -0.063]

-0.026
[-0.085, 0.032]

1.27
[1.06, 1.49]

Asymptotic bootstrap:
weight matrix ΩACM (·),

exchangeability across (ij, t),
GMM asymptotics

-0.088
[-0.109, -0.062]

-0.026
[-0.091, 0.024]

1.27
[1.07, 1.51]

Intermediate case 1:
weight matrix ΩACM (·),

exchangeability across (ij, t),
Bayesian bootstrap

-0.088
[-0.108, -0.050]

-0.026
[-0.122, 0.019]

1.27
[0.90, 1.46]

Intermediate case 2:
weight matrix ΩACM (·),

exchangeability across industries,
Bayesian bootstrap

-0.088
[-0.098, -0.064]

-0.026
[-0.085, -0.003]

1.27
[1.06, 1.42]

Preferred approach:
centered weight matrix,

exchangeability across industries,
Bayesian bootstrap

-0.078
[-0.094, -0.059]

-0.049
[-0.099, -0.013]

1.25
[1.03, 1.40]

Table 7: Uncertainty quantification for relevant economic quantities from Figures 3, 4 and
5 in Artuç, Chaudhuri, and McLaren (2010) for ζ = 0.97. For the first row the numbers in
brackets correspond to 95% confidence intervals. For the other rows, the numbers in brackets
correspond to 95% Bayesian bootstrap credible intervals.

All intervals are asymmetric around the point estimates. For all approaches, for each of

the bootstrap draws, the employment share goes down and the lifetime utility goes up. No-

tably, this is not the case for the change in the equilibrium wage. To investigate this further,

Figure 6 plots normal approximation as implied by the standard errors and the smoothed

bootstrap distributions corresponding to the rows of Table 7. The posterior distributions

corresponding to the second, third and fourth approaches have heavy left tails, indicating a

small probability of a large decrease in the equilibrium wage. Furthermore, all distributions

have non-negligible mass above zero. In footnote 26 of Artuç, Chaudhuri, and McLaren

(2010) it is mentioned that in principle it could happen that the equilibrium wage rises but
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“that does not happen in this case”. However, when we account for uncertainty this turns

out to be an economically important scenario that should be taken into consideration—a

finding not visible from point estimates alone.

Figure 6: Smoothed Bayesian bootstrap posterior distribution for the change in wages based
on Figure 4 in Artuç, Chaudhuri, and McLaren (2010) for ζ = 0.97. “Delta method” and
“Asymptotic bootstrap” use the normal approximation based on the analytic approach using
the weight matrix ΩACM (·) from Algorithm 3 and assuming exchangeability across all ob-
servations, “Intermediate case 1” corresponds to the smoothed Bayesian bootstrap posterior
using the weight matrix ΩACM (·) from Algorithm 3 and assuming exchangeability across all
observations, “Intermediate case 2” corresponds to the smoothed Bayesian bootstrap poste-
rior using the weight matrix ΩACM (·) from Algorithm 3 and assuming exchangeability across
industries, and “Preferred approach” corresponds to the smoothed Bayesian bootstrap pos-
terior using a centered weight matrix and assuming exchangeability across industries.

7 Comparison with Alternative Methods

As discussed in the introduction, there exist various alternatives for uncertainty quantifica-

tion. Here, I discuss an alternative bootstrap from Davezies, D’haultfœuille, and Guyonvarch

(2021) based on resampling, and analytic standard errors based on Graham (2020a,b).
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7.1 Pigeonhole Bootstrap

The closest method for uncertainty quantification for θ̂ that is theoretically grounded is the

pigeonhole bootstrap from Davezies, D’haultfœuille, and Guyonvarch (2021). The method

is summarized in Algorithm 5. For quantitative trade and spatial models, the most im-

portant disadvantage of the pigeonhole bootstrap is that its existing theoretical guarantees

rely on approximations that envision large number of units. However, as illustrated by the

applications in Section 6, relevant applications often include a small number of units.

Algorithm 5 Pigeonhole bootstrap procedure

1. Input: Bilateral data {Xkℓ}k ̸=ℓ and estimator function T : ∆ (X ) → Θ.

2. For each bootstrap draw b = 1, ..., B:

(a) Sample n units independently with replacement from {1, ..., n} with equal proba-

bility. Let W
pb,(b)
k denote the number of times that k is sampled.

(b) Compute

θ̂∗,pb,(b) = T

(∑
k ̸=ℓ

W
pb,(b)
k ·W pb,(b)

ℓ

n (n− 1)
· δXkℓ

)
.

3. Report the quantiles of interest of
{
θ̂∗,pb,(1), ..., θ̂∗,pb,(B)

}
.

Example (Waugh, 2010). For the application in Waugh (2010), the pigeonhole bootstrap re-

samples countries with replacement, so a given bootstrap draw may include repeated coun-

tries and omit others entirely. For instance, with 43 countries, one draw might include

multiple copies of Australia and no copy of Belgium. In contrast, the Bayesian bootstrap

procedure in Algorithm 1 assigns continuous and strictly positive weights to all 43 countries

in every draw. △

Towards uncertainty quantification for the counterfactual prediction γ̂, the pigeonhole

bootstrap procedure again only delivers asymptotic frequentist guarantees. If one is confi-

dent in the asymptotic approximation and the validity of the resulting coverage interval for

θ, then uncertainty can be propagated using a delta method or bootstrap approximation.

Specifically, one could compute bootstrap draws as

γ̂∗,pb,(b) = g
(
{Xkℓ}k ̸=ℓ , θ̂

∗,pb,(b)
)
, (30)
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for b = 1, ..., B, and construct a coverage interval for γ using these draws. The validity of

this approach follows from Theorem 6. In Appendix B I perform a simulation exercise that

for all my applications compares coverage across methods, assuming the data are generated

according to the pigeonhole bootstrap.

To illustrate the differences between the Bayesian bootstrap and the pigeonhole bootstrap,

consider the application in Artuç, Chaudhuri, and McLaren (2010) discussed in Section 6.2,

where, for my preferred specification, the number of interacting units is n = 6. Table 8

shows that the credible intervals obtained from the Bayesian bootstrap are narrower than

the coverage intervals obtained from the pigeonhole bootstrap. Figure 5 displays the corre-

sponding bootstrap distributions, omitting draws outside of the considered ranges. There

is a non-negligible probability that the pigeonhole bootstrap distribution only has bilateral

flows between two industries (around 2% for n = 6). The pigeonhole bootstrap also produces

more extreme outliers. Specifically, approximately 0.8% of the bootstrap draws for the mean

and 0.7% for the variance fall outside the plotted ranges. For the Bayesian bootstrap, the

corresponding rates are 0.01% and 0.005%, respectively.

Point
estimate

95% Bayesian
bootstrap
credible
interval

95% pigeonhole
bootstrap
confidence
interval

Mean 5.98 [4.31, 10.13] [4.06, 11.39]
Standard deviation 1.93 [1.35, 3.04] [1.18, 3.45]

Table 8: Uncertainty quantification for Panel IV in Table 3 in Artuç, Chaudhuri, and
McLaren (2010) for ζ = 0.97.

7.2 Analytic Standard Errors

A second alternative approach for uncertainty quantification for θ̂ is to find frequentist stan-

dard errors. I adapt the likelihood setting in Graham (2020b) to obtain a new result for

Z-estimators:

Proposition 1 (Analytic standard error for Z-estimators). Suppose θ̂ solves EPn,Xij

[
ϕ
(
Xij; θ̂

)]
=

0 and θ solves EPXij
[ϕ (Xij; θ)] = 0. Then a consistent variance estimator for θ̂ is given by

V̂arGraham

(
θ̂
)
=

1

n
Σ̂−1

1

(
4Σ̂2 +

2

n− 1

(
Σ̂3 − 2Σ̂2

))(
Σ̂−1

1

)′
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Figure 7: Bootstrap distributions of estimators for Panel IV in Table 3 in Artuç, Chaudhuri,
and McLaren (2010) for ζ = 0.97.

where

Σ̂1 =
1

n (n− 1)

∑
k ̸=ℓ

∂ϕ (Xkℓ; θ)

∂θ
|θ=θ̂

Σ̂2 =

(
n

3

)−1 n−2∑
k=1

n−1∑
ℓ=k+1

n∑
s=ℓ+1

1

3


(
ϕ̂kℓ + ϕ̂ℓk

2

)(
ϕ̂ks + ϕ̂sk

2

)′

(
ϕ̂kℓ + ϕ̂ℓk

2

)(
ϕ̂ℓs + ϕ̂sℓ

2

)′

+

(
ϕ̂ks + ϕ̂sk

2

)(
ϕ̂ℓs + ϕ̂sℓ

2

)′
Σ̂3 =

(
n

2

)−1 n−1∑
k=1

n∑
ℓ=k+1

(
ϕ̂kℓ + ϕ̂ℓk

2

)(
ϕ̂kℓ + ϕ̂ℓk

2

)′

,

with ϕ̂ij = ϕ
(
Xij; θ̂

)
.

For θ̂ a Z-estimator, one can then report the confidence interval

[
θ̂ ± 1.96 ·

√
V̂arGraham

(
θ̂
)]

.

As argued in Theorem 6, under some regularity conditions we can use the delta method to

find a valid confidence interval for γ.
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There are various reasons why one might prefer using the Bayesian bootstrap procedure

instead of these analytic standard errors. Firstly, similar to the pigeonhole bootstrap, the

validity of the standard errors relies on asymptotic approximations that envision a large

number of units. Secondly, it is non-trivial how to adjust the analytic approach to various

extensions as discussed in Section 5 (Graham, 2024). Lastly, the approach can be difficult to

implement. For example, for over-identified GMM, this approach requires computing many

numerical derivatives.

7.3 Application 3: Silva and Tenreyro (2006)

That being said, when the sample size is large, the data are dyadic and there are no missing

values, both the pigeonhole bootstrap and the analytic standard errors result in uncertainty

quantification that is similar to the Bayesian bootstrap procedure for a Z-estimator. This

follows from Corollary 2 and Proposition 1 in the current paper and Theorem 2.4 in Davezies,

D’haultfœuille, and Guyonvarch (2021). To illustrate this, in Appendix G I revisit the

application that was considered in both Graham (2020a) and Davezies, D’haultfœuille, and

Guyonvarch (2021), namely a PPML regression based on data from Silva and Tenreyro

(2006). In that setting, despite the Bayesian bootstrap being the only procedure with a

finite-sample interpretation, all three methods yield similar uncertainty quantification.

8 Conclusion

This paper considers uncertainty quantification for counterfactual predictions in polyadic

settings. I propose a Bayesian bootstrap procedure to quantify uncertainty around esti-

mators for structural parameters. This also implies valid uncertainty quantification for the

point estimates of counterfactual predictions. The procedure is especially appealing in ap-

plications with a small number of interacting units, as it admits a finite-sample Bayesian

interpretation. At the same time, it provides frequentist asymptotic guarantees under mild

conditions. By revisiting the applications in Waugh (2010), Caliendo and Parro (2015) and

Artuç, Chaudhuri, and McLaren (2010), I illustrate the practical advantages of the proposed

approach.
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Appendix

A Extra Results for Running Example: Waugh (2010)

A.1 Model Details

In Section 2.1.3 I introduced the counterfactual mapping

{Xkℓ}k ̸=ℓ , θ̂,
{
τ cfkℓ
}
7→
{
ŵcf

k

}
.

Here,

{Xkℓ}k ̸=ℓ = {(λkℓ, λkk, τkℓ, pk, pℓ)}k ̸=ℓ

= ({λkℓ} , {τkℓ} , {pk}) ,

since τkk = 1 for all k. Recall that λkℓ denotes country ℓ’s expenditure share on goods from

country k, τkℓ denotes estimated iceberg trade costs from country k to country ℓ, and pk

denotes the aggregate price in country k.

The equilibrium conditions in Waugh (2010) can be viewed as mapping rental rates,

trade costs, labor endowments, production parameters and the productivity parameter to

aggregated prices, expenditure shares and wages:

{rk} , {τkℓ} , {Lk} , {Qk} , α, β, θM 7→ {pk} , {λkℓ} , {wk} . (31)

Currently, Xkℓ only contains the variables that are relevant for constructing the estimator

θ̂. The other variables that are inputs to the counterfactual analysis are implicit in the

counterfactual mapping. These are labor endowments {Lk}, aggregate capital-labor ratios

{Kk} and the production parameters (α, β). So the “data” that we have in hand are(
{Xkℓ}k ̸=ℓ , {Lk} , {Kk} , α, β

)
.

It follows that we require a “calibration-mapping” that maps observed variables and param-

eters to rental rates and production parameters:

{Xkℓ}k ̸=ℓ , {Lk} , {Kk} , α, β, θ̂ 7→ {r̂k} ,
{
Q̂k

}
.

Such a mapping exists and we can use the equilibrium mapping in Equation (31) to arrive
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at:

{r̂k} ,
{
τ cfkℓ
}
, {Lk} ,

{
Q̂k

}
, α, β, θ̂ 7→

{
p̂cfk
}
,
{
λ̂cfkℓ

}
,
{
ŵcf

k

}
.

Once we have obtained the counterfactual wage vector
{
ŵcf

k

}
, we can calculate the various

inequality statistics.

A.2 Different Subsets of the Data

The productivity parameter in Waugh (2010) is estimated for the full sample and for the

two subsets of OECD countries and non-OECD countries. Table 9 and Figure 8 add these

subsets to Table 1 and Figure 1, respectively.

A.3 Using PPML instead of OLS

Equation (16) gives the moment function for the application in Waugh (2010) when not

omitting zeros and using PPML. Table 10 and Figure 9 add the resulting credible intervals

and posterior distributions to Table 9 and Figure 8, respectively. The point estimates drop

considerably and there is more uncertainty.

A.4 Implementation details

To compute the limiting marginal prior according to Theorem 3, since there are missing data

I use δχ(ϱ(Xkℓ))+χ(ϱ(Xℓk))
2

when both (k, ℓ) and (ℓ, k) are observed, δχ(ϱ(Xkℓ)) when (k, ℓ) but not

(ℓ, k) is observed, and δχ(ϱ(Xℓk)) when (ℓ, k) but not (k, ℓ) is observed.

A.5 Alternative Methods

Table 11, Figure 10 and Table 12 reproduce Table 9, Figure 8 and Table 3, respectively, but

add the results corresponding to the pigeonhole bootstrap from Section 7.1. There are some

small differences, especially for the non-OECD sample, but overall the economic conclusions

do not change. The approach using analytic standard errors from Section 7.2 cannot be

applied here because a substantial share of the observations are missing.
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B Comparing Methods using Pigeonhole Bootstrap DGP

Recall the model in Assumption 3:

C1, ..., Cn|h,PC
iid∼ PC

Xij = h (Ci, Cj) , for Ci ̸= Cj.

To test the performance of the various methods discussed in Section 7, I will use a simulation

DGP. Specifically, consider the thought experiment where we observe the latent variables

{Ck}; resample them with replacement ; and then construct the corresponding data. As

summarized in Algorithm 6, this corresponds exactly to the pigeonhole bootstrap. After

constructing such a dataset, we can use the various available approaches and check whether

the resulting confidence or credible interval covers the structural estimator θ̂. By repeating

this procedure many times, we can compute the coverage for each method. Table 13 reports

Algorithm 6 Pigeonhole bootstrap DGP

1. Input: Bilateral data {Xkℓ}k ̸=ℓ.

2. Sample n units independently with replacement from {1, ..., n} with equal probability.

Let W
pb,(b)
k denote the number of times that k is sampled.

3. Construct a new dataset by replicating the observation Xkℓ a specific number of times,
namely W

pb,(b)
k ·W pb,(b)

ℓ , for all k ̸= ℓ.

coverage results for the structural estimators considered in the main text, extending the

results previously shown in Table 2.

C Proofs

C.1 Proof of Theorem 1

The proof proceeds in five steps. The first three steps consider the thought experiment where

we observe the latent variables {Ck} and know the function h. The fourth and fifth step

incorporate that in practice we only observe {Xkℓ}k ̸=ℓ.
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Finding πα (PC |h, {Ck}). Combining Equations (18) and (21), we know from Theorem 4.6

in Ghosal and van der Vaart (2017) that the posterior for PC is

πα (PC |h, {Ck}) = DP

(
α

α + n
Q+

n

α + n

1

n

n∑
k=1

δCk
, α+ n

)
. (32)

Finding π0 (PC |h, {Ck}). Applying Corollary 4.17 in Ghosal and van der Vaart (2017), we

can find the weak limit as the precision parameter α is taken to zero:

πα (PC |h, {Ck}) ⇝
α↓0

DP

(
n∑

k=1

1

n
· δCk

, n

)
,

almost surely. Going forward, denote with π0 the probability under the limiting posterior as

α ↓ 0, so that

π0 (PC |h, {Ck}) = DP

(
n∑

k=1

1

n
· δCk

, n

)
.

Note that this limiting posterior distribution on PC given the latent variables {Ck} and

the function h is proper. Furthermore, a random probability distribution P∗
n,C drawn from

π0 (PC |h, {Ck}) is necessarily supported on the observation points {Ck} = {C1, ..., Cn}.
Hence, by definition of a Dirichlet process (e.g. Definition 4.1 in Ghosal and van der Vaart,

2017), we have

(
P∗
n,C (C1) , ....,P∗

n,C (Cn)
)
∼ Dir

(
n;n ·

(
n∑

k=1

1

n
· δCk

)
(C1) , ..., n ·

(
n∑

k=1

1

n
· δCk

)
(Cn)

)
∼ Dir (n; 1, ..., 1) .

It follows that

P∗
n,C ∼ π0 (PC |h, {Ck})

⇒ P∗
n,C =

n∑
k=1

Wk · δCk
, (W1, ...,Wn) ∼ Dir (n; 1, ..., 1) , (33)

and we have

Prπ0 {Ci ∈ B|h, {Ck}} =
n∑

k=1

Wk · I {Ck ∈ B} . (34)
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Finding π0
(
PXij

|h, {Ck}
)
. Next, combining the model from Assumption 3 and the limiting

posterior in Equation (33), we find

Prπ0 {Xij ∈ A|h, {Ck}} = Prπ0 {h (Ci, Cj) ∈ A|Ci ̸= Cj, h, {Ck}}

=
Eπ0 [I {h (Ci, Cj) ∈ A} · I {Ci ̸= Cj} |h, {Ck}]

Prπ0 {Ci ̸= Cj|h, {Ck}}

=

∑
k ̸=ℓWk ·Wℓ · I {h (Ck, Cℓ) ∈ A}

1−
∑

sW
2
s

=

∑
k ̸=ℓWk ·Wℓ · I {Xkℓ ∈ A}∑

s ̸=tWs ·Wt

.

This implies that

P∗
n,Xij

∼ π0
(
PXij

|h, {Ck}
)

⇒ P∗
n,Xij

=
∑
k ̸=ℓ

Wk ·Wℓ∑
s ̸=tWs ·Wt

· δXkℓ
, (W1, ...,Wn) ∼ Dir (n; 1, ..., 1) . (35)

So we have found an expression for the limiting posterior on the marginal distribution of the

observed data given the latent variables {Ck} and the function h.

Finding π0

(
PXij

| {Xkℓ}k ̸=ℓ

)
. However, in practice we do not observe {Ck} and the function

h is unknown. We only observe {Xkℓ}k ̸=ℓ, so we are interested in the limiting posterior on

the marginal distribution of the observed data given the observed data, π0

(
PXij

| {Xkℓ}k ̸=ℓ

)
.

But using the fact that a random probability distribution drawn from π0
(
PXij

|h, {Ck}
)
can

be expressed using solely the observed data {Xkℓ}k ̸=ℓ, we can find an expression for this

limiting posterior:

π0

(
PXij

| {Xkℓ}k ̸=ℓ

)
=

∫
π0

(
PXij

|h, {Ck} , {Xkℓ}k ̸=ℓ

)
dπ0

(
h, {Ck} | {Xkℓ}k ̸=ℓ

)
=

∫
π0
(
PXij

|h, {Ck}
)
dπ0

(
h, {Ck} | {Xkℓ}k ̸=ℓ

)
= π0

(
PXij

|h, {Ck}
) ∫

dπ0

(
h, {Ck} | {Xkℓ}k ̸=ℓ

)
= π0

(
PXij

|h, {Ck}
)
.

The second equality follows from that knowing (h, {Ck}) implies knowing {Xkℓ}k ̸=ℓ. The

third equality follows from noting that in Equation (35), the limiting posterior π0
(
PXij

|h, {Ck}
)
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does not depend on {Ck} or h. In conclusion, we have

P∗
n,Xij

∼ π0

(
PXij

| {Xkℓ}k ̸=ℓ

)
⇒ P∗

n,Xij
=
∑
k ̸=ℓ

Wk ·Wℓ∑
s ̸=tWs ·Wt

· δXkℓ
, (W1, ...,Wn) ∼ Dir (n; 1, ..., 1) .

Finding π0

(
θ| {Xkℓ}k ̸=ℓ

)
. Lastly, since θ = T

(
PXij

)
and T is continuous with respect to

the topology of weak convergence, the limiting posterior π0

(
PXij

| {Xkℓ}k ̸=ℓ

)
also implies a

limiting posterior on structural estimand, π0

(
θ| {Xkℓ}k ̸=ℓ

)
. So indeed, the procedure from

Algorithm 1 has a Bayesian interpretation.

C.2 Proof of Theorem 2

Statement 1. The first part of Theorem 2 follows from the derivations in the proof of

Theorem 1, where we noted that the limiting posterior π0
(
PXij

|h, {Ck}
)
did not depend on

h or Q, which implies the influences of π (h) and the center measure on the limiting posterior

drop out when we take the prior precision parameter to zero. Furthermore we can write

Prπ0

{
Xij ∈ A| {Xkℓ}k ̸=ℓ

}
=
∑
k ̸=ℓ

Wk ·Wℓ∑
s ̸=tWs ·Wt

· I {Xkℓ ∈ A} ,

for any A, from which it follows that π0

(
PXij

| {Xkℓ}k ̸=ℓ

)
does not smooth across events.

Statement 2. The second part of Theorem 2 builds on Corollary 4.29 in Ghosal and van der

Vaart (2017), applied to the prior π (PC). This corollary states that if for every n and every

measurable partition {A1, ..., ARC
} of C, the vector

(
P∗
n,C (A1) , ...,P∗

n,C (ARC
)
)
, where

P∗
n,C ∼ π (PC |h, {Ck}) ,

depends only on the counts
(
NC

1 , ..., N
C
RC

)
, for NC

r =
∑n

k=1 I {Ck ∈ Ar}, if and only if the

prior π (PC) is a Dirichlet process or a trivial process.

Given this result, consider the prior π (h) that only puts probability mass on the function

h : C2 → X defined by h (Ci, Cj) = Ci. In that case X = C and for a given partition
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{B1, ..., BRX
}, we have(

Prπ

{
Xij ∈ B1| {Xkℓ}k ̸=ℓ

}
, ..., P rπ

{
Xij ∈ BRX

| {Xkℓ}k ̸=ℓ

})
=

Prπ
Ci ∈ B1|C1, ..., C1︸ ︷︷ ︸

n−1 times

, C2, ..., C2, ..., Cn, ..., Cn

 , ...,

P rπ {Ci ∈ BRX
|C1, ..., C1, C2, ..., C2, ..., Cn, ..., Cn}) .

For this choice of prior, we then know from Corollary 4.29 in Ghosal and van der Vaart

(2017), that the vectorPrπ
Ci ∈ B1|C1, ..., C1︸ ︷︷ ︸

n−1 times

, C2, ..., C2, ..., Cn, ..., Cn

 , ...,

P rπ {Ci ∈ BRX
|C1, ..., C1, C2, ..., C2, ..., Cn, ..., Cn})

depends only on the counts
(
NC

1 , ..., N
C
RX

)
that use

{C1, ..., C1, C2, ..., C2, ..., Cn, ..., Cn} ,

if and only if π (PC) is a Dirichlet process or a trivial process.

We can relate these counts back to {Xkℓ}k ̸=ℓ:(
NC

1 , ..., N
C
RX

)
=

(
(n− 1) ·

n∑
k=1

I {Ck ∈ B1} , ..., (n− 1) ·
n∑

k=1

I {Ck ∈ BRX
}

)

=

(∑
k ̸=ℓ

I {Xkℓ ∈ B1} , ...,
∑
k ̸=ℓ

I {Xkℓ ∈ BRX
}

)
.

We then have that the vector(
Prπ

{
Xij ∈ B1| {Xkℓ}k ̸=ℓ

}
, ..., P rπ

{
Xij ∈ BRX

| {Xkℓ}k ̸=ℓ

})
only depends on the counts(∑

k ̸=ℓ

I {Xkℓ ∈ B1} , ...,
∑
k ̸=ℓ

I {Xkℓ ∈ BRX
}

)
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if and only if π (PC) is a Dirichlet process or a trivial process. The conclusion follows.

C.3 Proof of Theorem 3

We first have to check whether the limit exists. We hence require the function T : ∆ (X ) →
Θ to be well-behaved in some sense. To formalize this, denote the function that maps a

given empirical distribution supported on {Ck} to an element of the parameter space by

TC : ∆ ({Ck}) 7→ Θ. I require this function to be well-behaved when evaluated on weighted

empirical distributions where the weights approach a degenerate limit.

Assumption 8 (Condition for existence of limiting marginal prior). For any permutation

σ : {1, ..., n} → {1, ..., n} and any sequence {ωk,w}w ∈ ∆({1, .., n}) with ωk,w > 0 and

limw→∞ ωk+1,w/ωk,w = 0 for all k, we have that

lim
w→∞

TC

(
n∑

k=1

ωσ(k),wδCσ(k)

)
= T̄C

(
Cσ(1), ..., Cσ(n)

)
,

for some limit T̄C (·).

Under Assumption 8, the limiting marginal prior as α ↓ 0 takes a simple form:

Lemma 2 (Existence). Under Assumptions 3 and 8, and using the Dirichlet process prior

PC ∼ DP

(
n∑

k=1

1

n
· δCk

, α

)
,

as α ↓ 0 the implied marginal prior π (θ) converges weakly to π∞ ∈ ∆(Θ), where

π∞ (θ) =
∑
σ∈S

1

n!
I
{
T̄C
(
Cσ(1), Cσ(2), ..., Cσ(n)

)
= θ
}
,

for S the set of permutations σ : {1, ..., n} → {1, ..., n}.

Lemma 2 shows existence of the limiting marginal prior. For the class of estimators that

can be written as functions of means, we can actually characterize the limiting object. For

this class, we have

TC (PC) = χ
(
ECi,Cj∼PC |Ci ̸=Cj

[ϱ (h (Ci, Cj))]
)
,

and since

TC

(
n∑

k=1

ωσ(k),wδCσ(k)

)
= χ

(∑
k ̸=ℓ

ωσ(k),w · ωσ(ℓ),w∑
s ̸=t ωσ(s),w · ωσ(t),w

· ϱ
(
h
(
Cσ(k), Cσ(ℓ)

)))
,
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Assumption 8 is satisfied for

T̄ (c1, ..., cn) =
χ (ϱ (h (c1, c2))) + χ (ϱ (h (c2, c1)))

2
.

This is the case because we have that
∑

k ̸=ℓ
ωk,w·ωℓ,w∑
s ̸=t ωs,w·ωt,w

= 1 and for k > ℓ we have

ωk,w · ωℓ,w∑
s ̸=t ωs,w · ωt,w

=
ω1,w · ω2,w∑
s ̸=t ωs,w · ωt,w

ωk,w

ωk−1,w

· · · ω3,w

ω2,w︸ ︷︷ ︸
→0

· ωℓ,w

ωℓ−1,w

· · · ω2,w

ω1,w︸ ︷︷ ︸
→0

.

Applying Lemma 2 implies that the marginal prior limit π∞ (θ) equals

2

n (n− 1)

∑
k>ℓ

δχ(ϱ(Xkℓ))+χ(ϱ(Xℓk))
2

.

C.4 Proof of Lemma 2

The proof follows that of Theorem 3 in Andrews and Shapiro (2024). The stick-breaking

representation of Dirichlet processes (see e.g. Theorem 4.12 of Ghosal and van der Vaart,

2017) implies that we can write draws from the prior π (PC) as

PC =
∞∑

m=1

Vm (α) δC̃m
,

where the random variables C̃m are drawn i.i.d. from
∑n

k=1
1
n
· δCk

, and

Vm (α) =
(
1− U

1
α
m

)m−1∏
r=1

U
1
α
r

where the random variables Ur are i.i.d. standard uniform. Note that Pr {Ur ∈ (0, 1) for all r} =

1, and that conditional on this event Vm (α) ∈ (0, 1) for all m and all α > 0, while

Vm+1 (α) /Vm (α) → 0 as α ↓ 0.

Let τ (1) ∈ {1, ..., n} be the index for the observation in the original (latent) data with

Cτ(1) = C̃1. For r ∈ {2, ..., n}, let s (r) be the smallest s such that C̃s is distinct from{
Cτ(1), ..., Cτ(r−1)

}
, and let Cτ(r) = C̃s(r). We can then equivalently write

PC =
n∑

k=1

ωk (τ, α) δCτ(k)
, ωk (τ, α) =

∞∑
m=1

Vm (α) I
{
C̃m = Cτ(k)

}
.

By construction PC ∈ ∆({Ck}), and ωk (τ, α) ∈ (0, 1) with probability one for all α > 0.
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Moreover, as α ↓ 0 we have ωk+1 (τ, α) /ωk (τ, α) → 0 for all k, so

lim
α↓0
TC (PC) = lim

α↓0
TC

(
n∑

k=1

ωk (τ, α) δCτ(k)

)
= T̄C

(
Cτ(1), Cτ(2), ..., Cτ(n)

)
by Assumption 8. The fact that we have to multiply by 1/n! then follows from the definition

of τ .

C.5 Proof of Theorem 4

Recall the definitions of Gn and G∗
n, now using Dirichlet draws (W1, ...,Wn) ∼ Dir (n; 1, ..., 1)

instead of exponential draws:

Gnf =
√
n

{∑
k ̸=ℓ

1

n (n− 1)
· f (Xkℓ)− EPXij

[f (Xij)]

}

G∗
nf =

√
n

{∑
k ̸=ℓ

Wk ·Wℓ∑
s ̸=tWs ·Wt

· f (Xkℓ)−
∑
k ̸=ℓ

1

n (n− 1)
· f (Xkℓ)

}
. (36)

We have the following lemma for U-processes based on Arcones and Giné (1993) and Zhang

(2001):

Lemma 3 (Weak convergence of empirical processes of U-processes). Let F̃ ⊆ (C2)
R
be a

measurable class of symmetric functions, and let

C1, ..., Cn
iid∼ PC .

The U-process based on PC and indexed by F̃ is

Un

(
f̃
)
=
∑
k ̸=ℓ

1

n (n− 1)
· f̃ (Ck, Cℓ) .

Suppose that:

(i) F̃ is permissible (see page 196 in Pollard, 1984) and admits a positive envelope F̃ with

PCF̃
2 <∞.

(ii) We have non-degeneracy, meaning that

Cov
(
f̃1 (C1, C2) , f̃2 (C1, C2′ )

)
> 0 ∀f̃1, f̃2 ∈ F̃ .
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(iii) There exist 0 < c, v < ∞ such that for every ϵ > 0 and probability measure Q̃ with

Q̃F̃ 2 <∞, we have

N

(
ϵ
∥∥∥F̃∥∥∥

L2(Q̃)
, F̃ , ∥·∥L2(Q̃)

)
≤ cϵ−v.

Then, defining the empirical processes

G̃nf̃ =
√
n

{∑
k ̸=ℓ

1

n (n− 1)
· f̃ (Ck, Cℓ)− EPC

[
f̃ (Ci, Cj)

]}

G̃∗
nf̃ =

√
n

{∑
k ̸=ℓ

Wk ·Wℓ · f̃ (Ck, Cℓ)−
∑
k ̸=ℓ

1

n (n− 1)
· f̃ (Ck, Cℓ)

}
,

we have weak convergence over ℓ∞
(
F̃
)
of both G̃n and G̃∗

n to the same centered Gaus-

sian process G̃ with covariance kernel

K̃
(
f̃1, f̃2

)
= 4Cov

(
f̃1 (C1, C2) , f̃2 (C1, C2′ )

)
,

where the convergence of G̃∗
n holds conditional on the data {Ck} and outer almost

surely.

To use this lemma, first note that as n → ∞, we can ignore the normalization term in

the denominator of Equation (36), because

∑
s ̸=t

Ws ·Wt = 1−
n∑

s=1

W 2
s

p→ 1.

The convergence in probability follows since E [
∑n

s=1W
2
s ] =

2
n+1

, and convergence in mean

to zero for a non-negative random variable implies convergence in probability.

Next, note that we can always “symmetrize” a sum of non-symmetric functions since

∑
k ̸=ℓ

f (Xkℓ) =
∑
k ̸=ℓ

f (Xkℓ) + f (Xℓk)

2
.

This symmetrization implies that the relevant covariance kernel is

K (f1, f2) = Cov (f1 (X12) + f1 (X21) , f2 (X12′ ) + f2 (X2′1)) .

Given these observations, it remains to check that Assumption 6 implies that we can apply

Lemma 3 with F̃ = F ◦ h.
Towards that end, note that F being permissible implies F ◦ h is permissible for mea-
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surable h. The existence of the positive integrable envelope function F for F implies the

existence of a positive integrable envelope function F ◦h for F◦h, since for any (f ◦ h) ∈ F◦h
and (c1, c2) ∈ C2,

|(f ◦ h) (c1, c2)| = |f (x12)| ≤ F (x12) = (F ◦ h) (c1, c2)

(F ◦ h) (c1, c2) = F (x12) > 0

PC (F ◦ h)2 = PXij
F 2 <∞.

Non-degeneracy is satisfied because

Cov
(
(f1 ◦ h) (C1, C2) + (f1 ◦ h) (C2, C1) , (f2 ◦ h)

(
C1, C

′

2

)
+ (f2 ◦ h)

(
C

′

2, C1

))
= Cov (f1 (X12) + f1 (X21) , f2 (X12′ ) + f2 (X2′1)) > 0.

Lastly, for each Q̃ ∈ ∆(C) such that Q̃ (F ◦ h)2 < ∞, there exists a Q ∈ ∆(X ) such that

QF 2 <∞ and

∥F ◦ h∥L2(Q̃) = ∥F∥L2(Q) .

This implies we have

N
(
ϵ ∥F ◦ h∥L2(Q̃) ,F ◦ h, ∥·∥L2(Q̃)

)
= N

(
ϵ ∥F∥L2(Q) ,F , ∥·∥L2(Q)

)
≤ cϵ−v.

C.6 Proof of Lemma 3

The lemma follows from combining Theorem 4.9 in Arcones and Giné (1993) and Corollary 1

in Zhang (2001). Condition (iii) in Lemma 3 differs from Condition 2 in Zhang (2001), as the

author assumes F̃ has polynomial discrimination (defined on page 17 of Pollard, 1984) rather

than the condition that the covering numbers are bounded by a polynomial in 1/ε. However,

in the proofs of Theorem 2.1 and Corollary 1 of Zhang (2001), polynomial discrimination

is only used to bound covering numbers using Lemma II.25 and II.36 in Pollard (1984). So

assuming the more familiar bound on the covering numbers directly is without loss.

C.7 Proof of Theorem 5

From Theorem 4 we know that under Assumptions 6, Gn defined byGnf =
√
n
{
Pn,Xij

f − PXij
f
}

converges unconditionally in distribution to a tight random element G, and G∗
n defined by

G∗
nf =

√
n
{
P∗
n,Xij

f − Pn,Xij
f
}

converges, conditionally given {Xkℓ}k ̸=ℓ and outer almost
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surely, to the same random element. This implies

sup
κ∈BL1

∣∣∣E [κ (G∗
n) | {Xkℓ}k ̸=ℓ

]
− E [κ (G)]

∣∣∣ as∗→ 0,

for BL1 the set of bounded Lipschitz functions from ℓ∞ (F) to [0, 1] (page 332 in Van der

Vaart, 2000). Since θ̂ is assumed to be of the form T
(
Pn,Xij

)
= φ

(
Pn,Xij

f
)
for f ∈ F , the

result then follows by applying the functional delta method for the bootstrap, Theorem 23.9

in Van der Vaart (2000).

C.8 Proof of Corollary 2

The relevant function class is FZ ≡ {νϑ,η : (ϑ, η) ∈ Θ×H}. Now, φ : ℓ∞ (FZ) 7→ Θ is the

map that extracts the zero from the estimating equation, so that we have,

θ = T
(
PXij

)
= φ (Ψ) ≡ φ

(
sup
η∈H

∣∣PXij
νϑ,η
∣∣)

θ̂ = T
(
Pn,Xij

)
= φ (Ψn) ≡ φ

(
sup
η∈H

∣∣Pn,Xij
νϑ,η
∣∣)

θ̂∗ = T
(
P∗
n,Xij

)
= φ (Ψ∗

n) ≡ φ

(
sup
η∈H

∣∣∣P∗
n,Xij

νϑ,η

∣∣∣) .
The proof follows Corollary 13.6 in Kosorok (2008). From Theorem 13.5 in Kosorok (2008),

we know that conditions (i)-(iii) are sufficient conditions for Hadamard differentiability of φ.

Conditions (iv) and (v) are regularity conditions. Condition (vi) guarantees weak conver-

gence of the empirical processes using Theorem 4. We can then apply Theorem 5 and the

result follows.

C.9 Proof of Theorem 6

We can Taylor expand γ̂ =
(
{Xkℓ}k ̸=ℓ , θ̂

)
around θ to find

√
n (γ̂ − γ) = G

(
θ̄
)√

n
(
θ̂ − θ

)
,

for G (·) = ∇θg
(
{Xkℓ}k ̸=ℓ , ·

)
and θ̄ an intermediate value between θ̂ and θ. The gradient

term is random because it depends on the data {Xkℓ}k ̸=ℓ. However, under the condition in

64



Equation (28), we have that G
(
θ̂
)
= G

(
θ̄
)
+ op (1). This leads to the approximation

√
n (γ̂ − γ)√
G
(
θ̂
)2

Σ̂

d
≈ N (0, 1) ,

and the result follows.

D Extra Results for Limiting Marginal Prior

Since the Dirichlet process prior in Equation (24) is only supported on {Ck}, we have

(PC (C1) , ....,PC (Cn)) ∼ Dir

(
n;α ·

n∑
k=1

1

n
· δCk

(C1) , ..., α ·
n∑

k=1

1

n
· δCk

(Cn)

)
∼ Dir

(
n;
α

n
, ...,

α

n

)
,

which collapses to the Bayesian bootstrap posterior in Equation (23) by setting α = n. From

an analogous argument as in the proof of Theorem 1, it now follows that for a given choice

of α we can sample from the corresponding marginal prior for PXij
:

PXij
∼ π

(
PXij

)
⇒ PXij

=
∑
k ̸=ℓ

Wk ·Wℓ∑
s̸=tWs ·Wt

· δXkℓ
, (W1, ...,Wn) ∼ Dir

(
n;
α

n
, ...,

α

n

)
.

Since θ = T
(
PXij

)
, a marginal prior for θ is also implied for a given choice of α, as is

summarized in Algorithm 7.

E Other Extensions

E.1 Multiway Clustering

One might want to incorporate another dimension of clustering. For example, in addition

to country-heterogeneity one might want to add sector-heterogeneity or time-heterogeneity.

We can accommodate this by using an additional, separate exchangeability assumption.

To illustrate, if the observed data {Xkℓ,s}k ̸=ℓ,s has a time component and we separately
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Algorithm 7 A marginal prior of θ along the uninformative limit sequence

1. Input: Bilateral data {Xkℓ}k ̸=ℓ, estimator function T : ∆ (X ) → Θ and prior precision
α.

2. For each draw b = 1, ..., B:

(a) Sample
(
V

(b)
1 , ..., V

(b)
n

)
iid∼ Ga

(
α
n
, 1
)
.

(b) Construct ω
(b)
kℓ = V

(b)
k · V (b)

ℓ /
(∑

s ̸=t V
(b)
s · V (b)

t

)
, for k, ℓ = 1, ..., n.

(c) Compute

θ̂∗,(b) = T

(∑
k ̸=ℓ

ω
(b)
kℓ · δXkℓ

)
.

3. Plot the histogram
{
θ̂∗,(1), ..., θ̂∗,(B)

}
.

want to allow for clustering across time periods, we would sample(
W

(b)
1 , ...,W (b)

n

)
∼ Dir (n; 1, ..., 1)(

W̌
(b)
1 , ..., W̌

(b)
T

)
∼ Dir (T ; 1, ..., 1) ,

and compute bootstrap draws according to

θ̂∗,(b) = T

(∑
k ̸=ℓ,s

W
(b)
k ·W (b)

ℓ∑
u̸=vW

(b)
u ·W (b)

v

· W̌ (b)
s · δXkℓ,s

)
.

In the model, adding another dimension of heterogeneity corresponds to independently sam-

pling another set of latent variables. For the example where we also have time-heterogeneity,

we have

C1, ..., Cn|h,PC ,PČ
iid∼ PC

Č1, ..., ČT |h,PC ,PČ
iid∼ PČ

Xij,t = h
(
Ci, Cj, Čt

)
, for Ci ̸= Cj for each t,

with corresponding priors

(h,PC ,PČ) ∼ π (h) ·DP (QC , αC) ·DP (QČ , αČ) .
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E.2 Conditional Exchangeability

The key underlying model assumption, as discussed in Section 3.1, is that latent character-

istics of the units are drawn i.i.d. from some distribution, or that “units are exchangeable”.

One might believe this exchangeability assumption only conditional on a set of covariates.

For example one might argue latent characteristics of countries are only i.i.d. within con-

tinent or within trade agreement. In this case, there exist different “types” within which

agents are exchangeable.

To illustrate, with two types we would independently sample(
W

(b)
1 , ...,W (b)

n1

)
∼ Dir (n1; 1, ..., 1)(

W
(b)
n1+1, ...,W

(b)
n1+n2

)
∼ Dir (n2; 1, ..., 1) ,

and compute bootstrap draws according to

θ̂∗,(b) = T

(
n1+n2∑
k=1

n1+n2∑
ℓ=1,ℓ̸=k

W
(b)
k ·W (b)

ℓ∑n1+n2

s=1

∑n1+n2

t=1,t̸=sW
(b)
s ·W (b)

t

· δXkℓ

)
.

The corresponding model is

C1, ..., Cn1|h,PC1 ,PC2

iid∼ PC1

Cn1+1, ..., Cn1+n2|h,PC1 ,PC2

iid∼ PC2

Xij = h (Ci, Cj) , for Ci ̸= Cj,

and the priors change to

(h,PC1 ,PC2) ∼ π (h) ·DP (Q1, α1) ·DP (Q2, α2) .

As in Section 3.1.1, we can again motivate the model using an Aldous-Hoover representa-

tion. Now, {Xij}i,j∈N,i ̸=j is assumed to be relatively exchangeable with respect to “types”R,

which means that there exist subpopulations within which agents are exchangeable. For the

bootstrap procedure, for each of these types we would obtain a separate vector of Dirichlet

draws. In this case,

{Xij}i,j∈N,i ̸=j

d
=
{
XσR(i)σR(j)

}
i,j∈N,i ̸=j

,

for any within-type relabeling operation σR : N → N. Graham (2020a) uses results from

Crane and Towsner (2018) to show that in this case there exists another array
{
X∗

ij

}
i,j∈N,i ̸=j
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generated according to

X∗
ij = h̃AH (U,Ri, Rj, Ci, Cj, Dij) , (37)

for U, {Ci} , {Dij}
iid∼ U [0, 1] , such that

{Xij}i,j∈N,i ̸=j

d
=
{
X∗

ij

}
i,j∈N,i ̸=j

.

F Extra Results for Applications

F.1 Extra Results for Application 1: Caliendo and Parro (2015)

F.1.1 Details for Implementation

For the Bayesian bootstrap procedure, for each draw I impose a lower bound of min
{
θ̂s
}
=

1.67 to ensure the code runs. From a Bayesian perspective, one can interpret this as a

dogmatic requirement that θs > 1.67 for all s. I also follow the authors and replace the

elasticity for sectors “Auto” and “Other Transport” by the average elasticity of the other

sectors.

F.1.2 Marginal Priors on {θs}

We can use Theorem 3 with

ϱ (Xkℓm) =

 log
(

F s
kℓF

s
ℓmF s

mk

F s
ℓkF

s
mℓF

s
km

)2
− log

(
F s
kℓF

s
ℓmF s

mk

F s
ℓkF

s
mℓF

s
km

)
· log

(
tskℓt

s
ℓmtsmk

tsℓkt
s
mℓt

s
km

)
 , χ

((
a1

a2

))
=
a2
a1
,

and continuity of χ is satisfied. Figure 11 plots the bootstrap posterior and the limiting

marginal prior using Theorem 3. For almost all cases, the marginal priors have some outliers

in the right tail, so I only consider (normalized) prior mass within ten standard deviations.

We observe that the prior is much flatter than the bootstrap posterior.

F.1.3 Alternative Methods

Table 14, Figure 12 and Table 15 reproduce Table 4, Figure 3 and Table 5, respectively, but

add the results corresponding to the pigeonhole bootstrap from Section 7.1. The confidence

intervals for the sectoral elasticities constructed using the pigeonhole bootstrap are consis-

tently larger and all include zero. The confidence intervals for the welfare predictions are

somewhat larger, especially the upper bound on the welfare effect of Mexico. The approach
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using analytic standard errors from Section 7.2 cannot be applied here because data are

triadic and a small share of observations are missing.

F.2 Extra Results for Application 2: Artuç, Chaudhuri, and McLaren

(2010)

F.2.1 Details for Implementation

In a small number of counterfactual draws, the welfare effects are complex numbers. I omit

these draws, and one can again interpret this as a dogmatic requirement that welfare effects

must be real numbers.

F.2.2 Alternative Methods

In principle one could apply the approach using analytic standard errors from Section 7.2

by interpreting the two-step GMM estimator as a just-identified GMM estimator as per

the discussion in Section 4.1.3. However, since this amounts to taking many numerical

derivatives, the procedure is numerically unstable.

G Application 3: Silva and Tenreyro (2006)

I follow the empirical illustrations in Graham (2020a) and Davezies, D’haultfœuille, and

Guyonvarch (2021), which both consider the dyadic PPML regression from Silva and Ten-

reyro (2006). Specifically, I consider the fitted regression function of bilateral trade flows

Fkℓ on a constant, the exporter’s log GDP, the importer’s log GDP and the log distance.

By taking the first order condition of the log likelihood, we can obtain the sample moment

condition

EPn,Xij

[(
Fij − exp

{(
1 GDPi GDPj distij

)
θ
})(

1 GDPi GDPj distij

)′]
= 0.

The basic specification has n = 136 countries so n·(n− 1) = 18, 360 bilateral trade flows. For

each of the four regression coefficients, I compute a coverage or credible interval in Table 16

and plot the resulting posterior or implied distributions in Figure 13 using (i) naive analytic

standard errors that cluster on dyads; (ii) the Bayesian bootstrap procedure in Algorithm

1; (iii) the pigeonhole-type bootstrap in Algorithm 5; and (iv) analytic standard errors from

Proposition 1. Reassuringly, all methods with a principled basis in large-sample theory yield

comparable results for uncertainty quantification.
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H Appendix Tables

Point
estimate

95% confidence
interval
based on

Waugh (2010)

95% Bayesian
bootstrap
credible
interval

All countries, n = 43 5.55 [5.39, 5.71] [5.12, 6.02]
Only OECD, n = 19 7.91 [7.46, 8.37] [6.91, 9.21]

Only non-OECD, n = 24 5.45 [5.06, 5.84] [4.42, 6.65]

Table 9: Uncertainty quantification for productivity parameters in Waugh (2010).

Point
estimate

95% confidence
interval
based on

Waugh (2010)

95% Bayesian
bootstrap
credible
interval

All countries, OLS, n = 43 5.55 [5.39, 5.71] [5.12, 6.02]
Only OECD, OLS, n = 19 7.91 [7.46, 8.37] [6.91, 9.21]

Only non-OECD, OLS, n = 24 5.45 [5.06, 5.84] [4.42, 6.65]
All countries, PPML, n = 43 4.19 - [3.42, 5.12]
Only OECD, PPML, n = 19 5.81 - [4.43, 7.41]

Only non-OECD, PPML, n = 24 4.49 - [3.17, 6.68]

Table 10: Uncertainty quantification for productivity parameters in Waugh (2010) using
OLS and PPML.

Point
estimate

95% confidence
interval
based on

Waugh (2010)

95% Bayesian
bootstrap
credible
interval

95% pigeonhole
bootstrap
confidence
interval

All countries, n = 43 5.55 [5.39, 5.71] [5.12, 6.02] [5.12, 6.05]
Only OECD, n = 19 7.91 [7.46, 8.37] [6.91, 9.21] [6.86, 9.41]

Only non-OECD, n = 24 5.45 [5.06, 5.84] [4.42, 6.65] [4.43, 6.91]

Table 11: Uncertainty quantification for productivity parameters in Waugh (2010).
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Scenario Baseline Autarky
τ cfij τij ∞ · I {i ̸= j}

Method BB PB BB PB

Variance
of log wages

1.30
[1.28, 1.32]

1.30
[1.28, 1.32]

1.35
[1.31, 1.38]

1.35
[1.31, 1.38]

90th/10th percentile
of wages

25.7
[25.1, 26.2]

25.7
[25.1, 26.2]

23.5
[22.6, 24.2]

23.5
[22.6, 24.2]

Mean % change
in wages

- -
-10.5

[-11.4, -9.6]
-10.5

[-11.4, -9.5]

Scenario Symmetry Free trade
τ cfij min {τij, τji} 1

Method BB PB BB PB

Variance
of log wages

1.05
[1.05, 1.05]

1.05
[1.05, 1.05]

0.76
[0.75, 0.78]

0.76
[0.75, 0.78]

90th/10th percentile
of wages

17.3
[17.2, 17.4]

17.3
[17.2, 17.4]

11.4
[11.0, 11.9]

11.4
[11.0, 11.9]

Mean % change
in wages

24.2
[22.4, 25.8]

24.2
[22.3, 25.8]

128.0
[114.4, 140.7]

128.0
[113.5, 140.7]

Table 12: Bayesian uncertainty quantification for counterfactual predictions as in Table 4 of
Waugh (2010). The numbers in brackets in the columns “BB” correspond to 95% Bayesian
bootstrap credible intervals, and the numbers in brackets in the columns “PB” correspond
to 95% pigeonhole bootstrap confidence intervals.

Based on method
in paper

Bayesian
bootstrap

Pigeonhole
bootstrap

Waugh (2010), all countries, n = 43 0.498 0.979 0.986
Waugh (2010), only OECD, n = 19 0.533 0.954 0.984

Waugh (2010), only non-OECD, n = 24 0.416 0.913 0.941
Caliendo and Parro (2015), θ1, n = 15 0.295 0.911 0.991
Caliendo and Parro (2015), θ2, n = 13 0.467 0.933 0.996
Caliendo and Parro (2015), θ3, n = 15 0.360 0.950 0.999
Caliendo and Parro (2015), θ4, n = 14 0.377 0.932 1.000

Table 13: Coverage for approach based on the method in paper, Bayesian bootstrap and
pigeonhole bootstrap using the pigeonhole bootstrap DGP from Algorithm 6, using 1000
simulated datasets and B = 1000. For both Waugh (2010) and Caliendo and Parro (2015),
I use heteroskedastic-robust standard errors.
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Point
estimate

95% confidence
interval based on

Caliendo and Parro (2015)

95% Bayesian
bootstrap
credible
interval

95% pigeonhole
bootstrap
confidence
interval

Agriculture, n = 15 9.11 [5.17, 13.05] [-4.05, 25.63] [-7.98, 30.19]
Mining, n = 13 13.53 [6.34, 20.73] [0.69, 42.35] [-0.89, 71.13]
Food, n = 15 2.62 [1.43, 3.81] [-1.26, 6.83] [-3.88, 8.17]
Textile, n = 14 8.10 [5.58, 10.61] [0.52, 16.76] [-2.43, 18.95]
Wood, n = 12 11.50 [5.87, 17.12] [-11.30, 22.88] [-30.90, 31.29]
Paper, n = 14 16.52 [11.33, 21.71] [1.70, 31.32] [-7.18, 39.60]

Petroleum, n = 12 64.44 [33.84, 95.04] [-6.41, 128.87] [-30.93, 128.88]
Chemicals, n = 14 3.13 [-0.37, 6.62] [-8.49, 13.72] [-11.59, 17.50]
Plastic, n = 13 1.67 [-2.69, 6.03] [-12.65, 14.01] [-20.33, 18.74]
Minerals, n = 14 2.41 [-0.72, 5.55] [-3.17, 9.47] [-5.99, 13.42]

Basic Metals, n = 14 3.28 [-1.64, 8.19] [-11.32, 15.91] [-15.76, 20.16]
Metal products, n = 14 6.99 [2.82, 11.15] [-5.75, 19.46] [-11.41, 25.91]

Machinery, n = 14 1.45 [-4.04, 6.93] [-12.75, 17.24] [-22.56, 26.82]
Office, n = 14 12.95 [4.07, 21.83] [-7.71, 36.25] [-14.35, 45.52]

Electrical, n = 14 12.91 [9.70, 16.12] [0.20, 21.37] [-5.35, 25.43]
Communication, n = 11 3.95 [0.48, 7.43] [-5.25, 10.98] [-10.96, 14.68]

Medical, n = 14 8.71 [5.65, 11.78] [-0.66, 26.37] [-10.96, 14.68]
Auto, n = 12 1.84 [0.04, 3.64] [-3.80, 5.48] [-46.82, 10.08]

Other Transport, n = 14 0.39 [-1.73, 2.51] [-5.84, 5.67] [-13.30, 10.14]
Other, n = 13 3.98 [1.86, 6.11] [-2.11, 9.68] [-6.80, 11.83]

Table 14: Uncertainty quantification for the benchmark estimates (which remove the coun-
tries with the lowest 1% share of trade for each sector) in Table 1 of Caliendo and Parro
(2015).

Point
estimate

95% Bayesian
bootstrap
credible
interval

95% pigeonhole
bootstrap
confidence
interval

Mexico 1.31% [0.65%, 2.51%] [0.68%, 3.38%]
Canada -0.06% [-0.10%, -0.02%] [-0.10%, -0.01%]
U.S. 0.08% [0.07%, 0.11%] [0.07%, 0.13%]

Table 15: Uncertainty quantification for welfare effects as in Table 2 of Caliendo and Parro
(2015).
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Point
estimate

Analytic,
clustering
on dyads

Bayesian
bootstrap

Pigeonhole
bootstrap

Analytic,
Graham (2020a)

Constant 1.22 [-2.58, 5.02] [-5.12, 8.34] [-5.77, 9.69] [-5.99, 8.43]
Exporter GDP 0.90 [0.76, 1.05] [0.63, 1.16] [0.59, 1.19] [0.65, 1.16]
Importer GDP 0.89 [0.76, 1.02] [0.63, 1.14] [0.58, 1.18] [0.63, 1.16]

Distance -0.57 [-0.76, -0.38] [-0.97, -0.21] [-1.08, -0.17] [-1.00, -0.14]

Table 16: Uncertainty quantification when regressing bilateral trade flows on a constant, log
exporter and importer GDP, and log distance using PPML. “Analytic, clustering on dyads”
corresponds to a 95% analytic confidence interval clustering on dyads, “Bayesian bootstrap”
corresponds to the 95% Bayesian bootstrap credible interval, “Pigeonhole bootstrap” cor-
responds to 95% pigeonhole bootstrap confidence interval, and “Analytic,Graham (2020a)”
correspond to the 95% analytic confidence interval based on Graham (2020a).

I Appendix Figures

Figure 8: Distributions for productivity parameters in Waugh (2010). “Waugh (2010)” cor-
responds to the normal approximation as implied by the standard error reported in Waugh
(2010), and “Bayesian bootstrap” corresponds to the smoothed Bayesian bootstrap distribu-
tion.
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Figure 9: Distributions for productivity parameters in Waugh (2010). “Waugh (2010), OLS”
corresponds to the normal approximation as implied by the standard error reported in Waugh
(2010) using OLS, “Bayesian bootstrap, OLS” corresponds to the smoothed Bayesian boot-
strap distribution using OLS, and“Bayesian bootstrap, PPML”corresponds to the smoothed
Bayesian bootstrap distribution using PPML.
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Figure 10: Distributions for productivity parameters in Waugh (2010). “Waugh (2010)”
corresponds to the normal approximation as implied by the standard error reported in Waugh
(2010), “Bayesian bootstrap” corresponds to the smoothed Bayesian bootstrap distribution,
and “Pigeonhole bootstrap” corresponds to the pigeonhole bootstrap distribution.
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Figure 11: Smoothed limiting posterior (π0) and marginal prior (π∞) for trade elasticities as
in Caliendo and Parro (2015).

76



Figure 12: Distributions for the benchmark estimates (which remove the countries with the
lowest 1% share of trade for each sector) in Table 1 of Caliendo and Parro (2015). “C&P”
corresponds to the normal approximation as implied by the standard errors reported in
Caliendo and Parro (2015), “BB” corresponds to the smoothed Bayesian bootstrap posterior,
and “PB” corresponds to the pigeonhole bootstrap distribution.
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Figure 13: Distributions when regressing bilateral trade flows on a constant, log exporter
and importer GDP, and log distance using PPML. “Analytic, clustering on dyads” corre-
sponds to the normal approximation based on the standard errors using clustering on dyads,
“Bayesian bootstrap”corresponds to the smoothed Bayesian bootstrap posterior distribution,
“Pigeonhole bootstrap” corresponds to the pigeonhole bootstrap distribution, and “Analytic,
Graham (2020a)” correspond to the normal approximation based on the standard errors us-
ing Graham (2020a).
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