
Measurement Error and Counterfactuals in

Quantitative Trade and Spatial Models

Bas Sanders, Harvard University∗

November 2025

Abstract

Counterfactuals in quantitative trade and spatial models are functions of the current

state of the world and the model parameters. Common practice treats the current state

of the world as perfectly observed, but there is good reason to believe that it is measured

with error. This paper provides tools for quantifying uncertainty about counterfactuals

when the current state of the world is measured with error. I recommend an empirical

Bayes approach to uncertainty quantification, and show that it is both practical and

theoretically justified. I apply the proposed method to the settings in Adao, Costinot,

and Donaldson (2017) and Allen and Arkolakis (2022) and find non-trivial uncertainty

about counterfactuals.

1 Introduction

Economists use quantitative trade and spatial models to evaluate counterfactual scenarios.

For instance, how do expenditure patterns across countries adjust in response to the im-
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plementation of a trade agreement? How are welfare levels affected when transportation

infrastructure connecting regions is improved? These counterfactual questions are typically

posed relative to an observed factual situation. This implies that the estimand of inter-

est depends directly on the realized data, rather than on the underlying data-generating

distribution—a departure from standard statistical settings.

The setting with data-dependent counterfactual estimands is further complicated by the

fact that data in quantitative trade and spatial models are often measured with error (Goes,

2023; Linsi, Burgoon, and Mügge, 2023; Teti, 2023). Unlike classical measurement error

settings, where the estimand is typically a parameter of the correctly measured population

distribution, here it is a functional of the realized data. To illustrate, consider the canonical

Armington model (Armington, 1969), where predicted welfare changes from hypothetical

trade cost shocks can be written as a function of baseline bilateral trade flows and the trade

elasticity (Arkolakis, Costinot, and Rodŕıguez-Clare, 2012). The question I address is how

measurement error in the observed trade flows affects uncertainty in the welfare predictions.

I develop an empirical Bayes framework for quantifying uncertainty around counterfactual

predictions. The approach requires specifying both a measurement error model and a prior

distribution over the latent true data, up to a set of hyperparameters. These hyperparameters

are estimated from the observed data via an empirical Bayes step. Bayes’ rule then yields an

estimated posterior distribution over the latent data given the noisy observations. Given the

structure of quantitative trade and spatial models, this posterior induces a corresponding

posterior over counterfactual predictions. Uncertainty can then be summarized by reporting

posterior quantiles.

In settings where the observed data consist of non-negative dyadic flows, I propose a de-

fault specification for the measurement error model and prior that can be calibrated directly

from the data, yielding a widely applicable empirical Bayes approach. Specifically, I model

measurement error as log-normal and use a log-normal prior centered on a structural gravity

equation, with a point mass at zero to accommodate zero flows. This setup is designed

2



for ease of implementation and is suitable for a wide class of quantitative trade and spatial

models.

I consider two approaches to calibrating the hyperparameters in this default specification.

The first assumes constant measurement error variances across flows and relies on researcher

input or domain knowledge. The second, applicable in the case of international trade, uses the

mirror trade dataset compiled by Linsi, Burgoon, and Mügge (2023), which reports bilateral

trade flows as recorded by both exporters and importers. I interpret these paired observations

as two independent noisy measurements of the true trade flow, enabling calibration of flow-

specific measurement error variances.

To illustrate the impact of incorporating measurement error into counterfactual analysis,

I revisit the applications in Adao, Costinot, and Donaldson (2017) and Allen and Arkolakis

(2022). In Adao, Costinot, and Donaldson (2017), which quantify the welfare effects of

China’s accession to the WTO, I model measurement error in baseline bilateral trade flows.

I apply the default empirical Bayes approach and construct uncertainty intervals that account

for measurement error in the estimated changes in China’s welfare from 1996 to 2011. These

intervals are substantially wider than those reported in Adao, Costinot, and Donaldson

(2017), which reflect estimation uncertainty.

In the setting of Allen and Arkolakis (2022), the counterfactual question concerns which

highway links in the United States yield the highest return on investment and are therefore

most promising for improvement. I model measurement error in traffic flows and apply the

default empirical Bayes approach, calibrating the prior and measurement error model using

estimates from Musunuru and Porter (2019). I compute uncertainty intervals that account

for measurement error for the three links with the highest estimated returns. Although the

intervals are wide, the relative ranking of the top three links remains robust.

This paper contributes to a growing body of work aimed at improving counterfactual anal-

ysis in quantitative trade and spatial models (Balistreri and Hillberry, 2008; Adao, Costinot,

and Donaldson, 2017; Kehoe, Pujolas, and Rossbach, 2017; Adão, Costinot, and Donaldson,
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2023; Ansari, Donaldson, and Wiles, 2024; Sanders, 2025). The most closely related work is

Dingel and Tintelnot (2025), which studies calibration procedures in granular environments.

That paper considers models that presume a continuum of agents and shows that, when

data are limited, unit-level idiosyncrasies are absorbed into the model, leading to overfitting

and poor out-of-sample performance. My focus is on the complementary issue of uncer-

tainty quantification due to measurement error—an issue that persists even in non-granular

settings. Dingel and Tintelnot (2025) recommends replacing raw observed data with fitted

values from a low-dimensional model. I show how this recommendation can be nested into

the proposed Bayesian framework.

The remainder of the paper is organized as follows. Section 2 introduces the setting and

notation. Section 3 presents the empirical Bayes framework for accounting for measurement

error in quantitative trade and spatial models. Section 4 describes a widely applicable

default approach. Section 5 demonstrates the procedure in the context of the Armington

model. Section 6 applies the method to the trade setting in Adao, Costinot, and Donaldson

(2017) and explores its use in the economic geography framework of Allen and Arkolakis

(2022). Section 7 concludes.

2 Counterfactuals in Quantitative Trade and Spatial Models

This section introduces the notation and discusses the key assumption that commonly un-

derlies counterfactual analyses in quantitative trade and spatial models.

2.1 Notation and Key Assumption

To begin, consider a baseline setting where there is no measurement error. Let D ∈ D ⊆ RdD

denote a data vector drawn from distribution PD, and let θ ∈ Θ ⊆ Rdθ denote a structural

parameter. Our objective is to compute a scalar counterfactual quantity γ ∈ R. The key

assumption that the counterfactual object of interest has to satisfy is:
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Assumption 1. For a given counterfactual question and fixed parameter value θ, the coun-

terfactual object γ can be expressed as a function of the realized data D:

γ = g (D, θ) , (1)

for some known function g : D ×Θ → R.

The exact functional form of g depends on the specific quantitative model that is con-

sidered. In Appendix A I discuss Assumption 1 for two leading classes of models, namely

invertible models and exact hat algebra models.

The main appeal of focusing on objects of the form in Assumption 1 is that it allows

researchers to answer counterfactual questions posed relative to a specific, observed factual

situation. In quantitative trade and spatial settings, such questions are often more at least

as relevant as those concerning average effects. For example, in a quantitative model of

international trade, the goal is typically to understand what would happen to the world

following a specific policy change, rather than what would occur in a randomly drawn year

under that policy.1

Assumption 1 implies that if the data D are observed without error and the structural

parameter θ is known, we can perfectly recover γ.2 This contrasts with standard econometric

models, where the object of interest is a function of the correctly measured distribution of

the data, rather than the actual observations. So the key distinction with standard settings

is: 
standard setting :

this paper :

γ = g (PD, θ)

γ = g (D, θ) , D ∼ PD

. (2)

Importantly, this difference implies that it would not suffice to be able to perfectly estimate

1Additionally, for exact hat algebra models, which are discussed in Appendix A, the focus on counterfac-
tuals as in Assumption 1 enables researchers to address counterfactual questions without requiring knowledge
of quantities that are difficult to observe or estimate—such as the level of trade costs.

2Indeed, by fixing g I abstract away from model misspecification, an important problem I engage with in
future work.
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the distribution PD. Towards uncertainty quantification, we hence need to account for

uncertainty about the realized data themselves rather than their distribution.

3 Empirical Bayes Uncertainty Quantification

This section introduces measurement error into quantitative trade and spatial models. It

outlines how to quantify the resulting uncertainty for the counterfactual prediction of interest.

3.1 Prior and Measurement Error Model

Under Assumption 1, our object of interest can be written as a function solely of the data

realizations and the structural parameter, which is convenient for answering relevant coun-

terfactual questions. However, the data realizations are economic variables which are often

measured with error. For instance, Ortiz-Ospina and Beltekian (2018) and Goes (2023)

highlight that there are large discrepancies between and within various data sources from

trade and international economics. Motivated by this, I assume that, instead of the true

data vector D, we observe a noisy version D̃.

For uncertainty quantification for the counterfactual prediction, we will require the pos-

terior distribution of the true data given the noisy data. Towards that end, I introduce a

model for the measurement error and a prior distribution for the true underlying data,


prior :

measurement error :

πprior (D;ϑ)

πme
(
D̃|D;ϑ

) .

Here, ϑ ∈ Rdϑ is a vector of unknown hyperparameters.
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3.2 Empirical Bayes and Posterior Distribution

Given such a prior distribution and a measurement error model, we can use an empirical

Bayes approach to estimate the unknown hyperparameters.3 Formally, we have

ϑ̃ = argmax
ϑ

∫
πme

(
D̃|D;ϑ

)
πprior (D;ϑ) dD.

Then, given the estimated hyperparameters ϑ̃, we can use Bayes’ rule to find the estimated

posterior distribution of the true data given the noisy data,

πpost
(
D|D̃; ϑ̃

)
=

πme
(
D̃|D; ϑ̃

)
πprior

(
D; ϑ̃

)
∫
πme

(
D̃|D; ϑ̃

)
πprior

(
D; ϑ̃

)
dD

. (3)

Using this estimated posterior, we can generate draws for the true data given the noisy data.4

The Bayesian approach allows researchers to incorporate economic knowledge through

the prior. For example when considering measurement error in non-negative flows between

locations, one can fit a prior centered on a gravity model, which I will do in Section 4.

3.3 Quantifying Uncertainty about γ

The object of interest is a function of the true data and the structural parameter. Going

forward, I will assume the structural parameter is known, an assumption I will discuss in

more detail in Section 3.5. Then, under Assumption 1 it follows that we can obtain the

estimated posterior for the counterfactual object of interest, πpost
(
γ|D̃; ϑ̃

)
.

Towards uncertainty quantification, we want to sample from this posterior and report the

3Rather than estimating the parameters of the prior distribution for the true underlying data, which
corresponds to an empirical Bayes approach, one could alternatively specify prior distributions for these
parameters, which corresponds to a hierarchical Bayes approach.

4Note that the measurement error distribution does not have to be mean zero, so also allows for measure-
ment error bias. Nevertheless, even mean zero measurement error can result in bias in the counterfactual
prediction of interest. This is automatically taken into account by the Bayesian approach when quantifying
uncertainty. Furthermore, the individual measurement error distributions can be arbitrarily correlated in
this general setup.
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relevant quantiles.5 The entire procedure is summarized in Algorithm 1.

Algorithm 1 Uncertainty quantification about γ = g (D, θ)

1. Input: prior πprior (D;ϑ), measurement error model πme
(
D̃|D;ϑ

)
, noisy data D̃, num-

ber of bootstrap draws B, coverage level 1−α (choose B and α such that α/2 ·B ∈ N).

2. Empirical Bayes estimation step: ϑ̃ = argmax
ϑ

∫
πme

(
D̃|D;ϑ

)
πprior (D;ϑ) dD.

3. Construct estimated posterior: πpost
(
D|D̃; ϑ̃

)
∝ πme

(
D̃|D; ϑ̃

)
πprior

(
D; ϑ̃

)
.

4. For b = 1, ..., B,

(a) Draw Db ∼ πpost
(
D|D̃; ϑ̃

)
.

(b) Compute γb = g (Db, θ) .

5. Sort {γb}Bb=1 to obtain
{
γ(b)
}B
b=1

with γ(1) ≤ γ(2) ≤ ... ≤ γ(B).

6. Report
[
γ(α/2·B), γ((1−α/2)·B)

]
.

A natural accompanying point estimator for the procedure in Algorithm 1 is the posterior

median, which is always guaranteed to be contained in the reported interval. By contrast,

the standard point estimator g
(
D̃, θ

)
, which does not account for measurement error, may

lay outside the interval. The posterior median corresponds to an optimal estimate under the

estimated posterior and under absolute value loss from a decision-theoretic perspective (see

for example Proposition 2.5.5 in Robert, 2007).

The posterior median answers the question: what does a Bayesian believe the counter-

factual prediction would have been in the absence of measurement error? While this is a

natural and intuitive question to ask, the answer necessarily depends on the prior. But

when the prior reflects well-established economic relationships—such as gravity patterns in

quantitative trade and spatial models—the posterior median provides a principled estimate

of the counterfactual prediction.

5Note that counterfactual predictions are typically derived as functions of the full system of counterfactual
equilibrium variables. Thus, whether the researcher is ultimately interested in a scalar outcome, a relative
comparison, or a global average, the mechanics of uncertainty quantification—drawing from the posterior
over the true data and solving for equilibrium—remain the same.
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3.4 Relation to the Literature

3.4.1 Relation to Measurement Error Literature

The literature on measurement error in nonlinear models is extensive, as reviewed in Hu

(2015) and Schennach (2016), and the most closely related strand of measurement error

literature is that on nonseparable error models (Matzkin, 2003; Chesher, 2003; Hoderlein and

Mammen, 2007; Matzkin, 2008; Hu and Schennach, 2008; Schennach, White, and Chalak,

2012; Song, Schennach, and White, 2015). However, these results do not apply to my setting.

The key distinguishing feature of the setting in this paper is that the object of interest

γ directly depends on the correctly measured data, because the equality in Assumption 1

is an exact statement. This is convenient for answering counterfactual questions, and arises

because counterfactual questions are typically posed relative to an observed factual situation.

In contrast, in standard econometric methods of measurement error, the object of interest

is a function of the correctly measured distribution of the data, PD, rather than the actual

realized observations, D. This leads to the key distinction in Equation (2).

This difference is important because in my setting, it would not suffice to be able to

perfectly estimate the distribution PD. For example in a quantitative model of international

trade, to answer counterfactual questions we need the realized trade flows, rather than the

trade flow distribution from which they are drawn. In contrast, in standard econometric

models of measurement error, knowing this distribution would suffice, because the estimands

are functionals of the correctly measured distribution of the data. By virtue of that, we need

to account for uncertainty about the observations themselves rather than their distribution.

3.4.2 Relation to Dingel and Tintelnot (2025)

The most relevant paper in the literature on improving counterfactual calculations in quanti-

tative trade and spatial economics is Dingel and Tintelnot (2025), which studies calibration

procedures in granular settings. In these settings, individual idiosyncrasies do not wash out
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and can cause overfitting and poor performance out-of-sample. To deal with this, Dingel and

Tintelnot (2025) proposes to, instead of the observed data, either use fitted values obtained

using a low-dimensional model or smooth the data using matrix approximation techniques.

Both of these approaches can be cast as special cases of the proposed procedure in Algorithm

1, by choosing a specific prior.

Specifically, the main recommendation is to use a low-dimensional model and is called

the covariates-based approach. Dingel and Tintelnot (2025) considers a quantitative spatial

model with a measure of L individuals. Let ℓij denote the measure of people residing in

location i and working in location j. The covariates-based approach then interprets the

observed migration shares
{

ℓ̃ij
L

}
as a finite sample from a continuum model. This results in

the maximum likelihood model

{
ℓ̃ij

}
;ϑ ∼ Multinomial ({hij (ϑ)} , L) , (4)

for ϑ a set of hyperparameters and hij (ϑ) a model function which I discuss further in Ap-

pendix B.

The covariates-based approach in Dingel and Tintelnot (2025) first finds a maximum

likelihood estimator ϑ̃ for ϑ using the model in Equation (4). Next, focusing on a specific

counterfactual object of interest denoted by γ = g
({

ℓij
L

}
; θ
)
for some known structural pa-

rameter θ and function g, the approach recommends using the fitted values
{
hij

(
ϑ̃
)}

instead

of the observed shares
{

ℓ̃ij
L

}
to compute counterfactuals. That is, the main recommendation

is to use the estimate

γ̃DT = g
({

hij

(
ϑ̃
)}

; θ
)

instead of g
({

ℓ̃ij
L

}
; θ
)
.

To see how the covariates-based approach from Dingel and Tintelnot (2025) is nested in
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my Bayesian framework, consider the following prior and measurement error model,


prior :

measurement error :

ℓij
L
;ϑ ∼ δhij(ϑ), i, j = 1, ..., n{

ℓ̃ij

}
;ϑ ∼ Multinomial

({
ℓij
L

}
, L
) , (5)

where δhij(ϑ) denotes the Dirac mass at hij (ϑ), implying a degenerate prior. The empirical

Bayes step then combines the prior and measurement error model to find

{
ℓ̃ij

}
;ϑ ∼ Multinomial ({hij (ϑ)} , L) ,

which overlaps with the model in Equation (4), and uses maximum likelihood estimation to

estimate ϑ by ϑ̃. This yields the estimated prior and measurement error model


prior :

measurement error :

ℓij
L
; ϑ̃ ∼ δhij(ϑ̃), i, j = 1, ..., n{

ℓ̃ij

}
; ϑ̃ ∼ Multinomial

({
ℓij
L

}
, L
) .

Using Bayes’ rule we can then find the estimated posterior for the true migration shares,

ℓij
L
|
{
ℓ̃ij

}
; ϑ̃ ∼ δhij(ϑ̃), i, j = 1, ..., n. (6)

Note that after the empirical Bayes estimation step, since the estimated prior is degenerate,

no information is taken from the estimated measurement error model.

The estimated posterior distributions in Equation (6) translate to an estimated posterior

for γ,

πpost
(
γ|
{
ℓ̃ij

}
; ϑ̃
)
= δg({hij(ϑ̃)};θ).

Indeed, this posterior is a point mass at the counterfactual prediction that uses the fitted

values
{
hij

(
ϑ̃
)}

as inputs. It follows that the covariates-based approach is a special case

of Algorithm 1 by choosing the prior and measurement error model as in Equation (5).
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Note that if we follow Algorithm 1 exactly, then in step 4a—where we draw from the

posterior distributions in Equation (6)—we will obtain the same values in each bootstrap

iteration. As a result, the interval constructed in step 6 will collapse to a single point. This

outcome is expected, as the procedure of Dingel and Tintelnot (2025) is only concerned with

point estimation and does not engage with uncertainty quantification.

The second recommendation in Dingel and Tintelnot (2025) is to replace the observed

data with a smoothed version using matrix approximation techniques. I discuss this approach

in Appendix B.

3.5 Estimation Error

The counterfactual prediction of interest will typically depend on a structural parameter θ.

It is common in applied work to plug in a fixed value for the structural parameter taken from

the literature or obtained through data-driven methods, thus ignoring the uncertainty asso-

ciated with the estimation process. An exception is Adao, Costinot, and Donaldson (2017),

which reports confidence sets for the counterfactual predictions of interest that account for

estimation error.

Towards accounting for estimation error for quantitative trade and spatial models in

the presence of measurement error, let θ̃ denote the estimator of the estimand θ. This

estimand is usually a function of the distribution of the data PD. This implies that, to

address measurement error affecting the structural parameter, one can apply the frequentist

measurement error techniques discussed in Section 3.4.1 to find a bias-corrected estimate,

though the resulting correction will not admit a Bayesian interpretation.

Alternatively, in Appendix C I outline a fully Bayesian approach that also considers

estimation error. Specifically, I assume that the posterior distribution of the structural

parameter θ given the true dataD is approximately normal, which is justified under regularity

conditions that are closely related to those required for frequentist asymptotic normality. We
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then have two different posteriors,


estimation error posterior :

measurement error posterior :

πpost,ee (θ|D)

πpost,me
(
D|D̃; ϑ̃

) .

As in Section 3.3, a natural point estimator for the structural parameter is the median of

the estimated posterior given the noisy data,

πpost
(
θ|D̃; ϑ̃

)
=

∫
πpost,ee (θ|D) πpost,me

(
D|D̃; ϑ̃

)
dD.

Using Assumption 1, we can also find the posterior πpost,ee (γ|D), and it follows that a natural

point estimator for the counterfactual prediction is the median of the estimated posterior

πpost
(
γ|D̃; ϑ̃

)
=

∫
πpost,ee (γ|D) πpost,me

(
D|D̃; ϑ̃

)
dD.

In Appendix C I describe how to sample from the posteriors πpost
(
θ|D̃; ϑ̃

)
and πpost

(
γ|D̃; ϑ̃

)
.

There, I also outline how to quantify uncertainty while jointly accounting for estimation error

and measurement error in a natural way.

It is important to understand that Bayesian estimators such as the medians of πpost
(
θ|D̃; ϑ̃

)
and πpost

(
γ|D̃; ϑ̃

)
need not satisfy frequentist properties such as consistency, even when the

prior is well-specified. I elaborate on this possibility in Appendix C, by showing frequentist

inconsistency of a structural estimator in a stylized example.

However, for models satisfying Assumption 1, I am not aware of a frequentist framework

that integrates both estimation error and measurement error within a unified procedure

that permits both point estimation and uncertainty quantification. By contrast, the pro-

posed Bayesian approach accommodates both sources of uncertainty within a single coherent

framework. Moreover, this approach nests the case where only measurement error is present:

as estimation error vanishes, the procedure naturally reduces to the framework that solely
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accounts for measurement error. I therefore recommend the Bayesian approach when both

sources of uncertainty matter, and either the Bayesian or frequentist approach when only

estimation error is of concern.

4 Widely Applicable Default Approach

This section proposes a default empirical Bayes approach that can be applied in many set-

tings, as it is both economically reasonable for many quantitative trade and spatial models

and computationally convenient. It also discusses the toolkit that accompanies the paper.

4.1 Default Prior and Measurement Error Model

Often it will be clear what a sensible prior and measurement error model are, for example

a Dirichlet prior when observing migration shares. For when this is not the case, in this

section I provide a widely applicable default approach for quantifying uncertainty about the

counterfactual prediction of interest. This default approach can be applied out-of-the-box to

many quantitative trade and spatial models, but can also easily be adapted to other settings.

It recommends default choices for the prior distribution and measurement error model, and

discusses how to calibrate both based on observed data.

Concretely, consider the setting where we can write γ = g ({Fij} , θ), for {Fij} a set of

non-negative flows between locations. This setup is commonplace in quantitative trade and

spatial models (Costinot and Rodŕıguez-Clare, 2014; Redding and Rossi-Hansberg, 2017;

Proost and Thisse, 2019). I assume that both the prior distributions on the true flows and

the measurement errors are mixtures of a point mass at zero and a log-normal distribution,

a so-called spike-and-slab distribution (Mitchell and Beauchamp, 1988). The point mass at

zero is necessary because in both trade and spatial applications bilateral flows of zeros are

common, particularly when considering more granular data (Helpman, Melitz, and Rubin-

stein, 2008; Dingel and Tintelnot, 2025). This prior and measurement error model imply that
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the posterior distribution of the true flows given the noisy flows will also be a spike-and-slab

distribution. This mixture model is fairly flexible and the conjugacy is needed for compu-

tational speed. Furthermore, I assume that the prior mean exhibits a gravity relationship,

for which there is strong empirical evidence (Head and Mayer, 2014; Allen and Arkolakis,

2018).6 This is summarized in the following assumption:

Assumption 2. We have



true zeros :

spurious zeros :

prior :

likelihood :

Pij ∼ Bern (pij)

Bij ∼ Bern (bij)

Fij ∼ Pij · δ0 + (1− Pij) · eN(µij ,s
2
ij)

µij = β log distij + αorig
i + αdest

j

F̃ij|Fij ∼ δ0 · I {Fij = 0}

+
[
Bij · δ0 + (1−Bij) · eN(logFij ,ς

2
ij)
]
· I {Fij > 0}

,

for i, j = 1, ..., n, where δ0 denotes the Dirac mass at zero, distij denotes the distance between

locations i and j, αorig
i is an origin fixed effect and αdest

j is a destination fixed effect.

The probability that a bilateral trade flow is truly zero is denoted by pij, and a true

zero flow is assumed to always result in an observed zero.7 The probability of a spurious

zero—that is, an observed zero despite a non-zero underlying true flow—is denoted by bij.

The prior means and variances are denoted by {µij} and
{
s2ij
}
, respectively. The flow-specific

measurement error variances are denoted by
{
ς2ij
}
.

Gather the hyperparameters in ϑ =
(
{pij} , {bij} , β,

{
αorig
i

}
,
{
αdest
i

}
,
{
s2ij
}
,
{
ς2ij
})

. It

follows that the posterior distribution for the true flow between location i and j, Fij, given

6One can easily enrich this gravity prior by adding other “distance” variables such as differences in income
or productivity, or by adding dummies that indicate similarity such as contiguity or a common language, see
for example Silva and Tenreyro (2006). I experimented with this but the results do not change much.

7Assumption 2 implies that both true and spurious zeros occur randomly. Alternatively, one could think
about incorporating endogenous zeros using selection mechanisms such as in Helpman, Melitz, and Rubinstein
(2008).
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its noisy version, F̃ij is given by

Fij|F̃ij;ϑ ∼


Qij · δ0 + (1−Qij) · eN(µij ,s

2
ij)

exp

{
N
(

s2ij
s2ij+ς2ij

log F̃ij +
ς2ij

s2ij+ς2ij
µij,

(
1
s2ij

+ 1
ς2ij

)−1
)} F̃ij = 0

F̃ij > 0

, (7)

for i, j = 1, ..., n, where Qij ∼ Bern
(

pij
pij+bij(1−pij)

)
.

Conditional on being able to calibrate the parameters ϑ—the empirical Bayes estimation

step—one can quantify uncertainty about γ by finding the interval as described in Algorithm

1. Then, a default procedure for quantifying uncertainty about γ is summarized in Algorithm

2.

Algorithm 2 Uncertainty quantification about γ = g ({Fij} , θ)

1. Input: noisy flows
{
F̃ij

}
, number of bootstrap draws B, coverage level 1− α (choose

B and α such that α/2 ·B ∈ N).

2. Empirical Bayes estimation step: calibrate ϑ as outlined in Section 4.2 and denote the
estimator by ϑ̃.

3. For b = 1, ..., B,

(a) For i, j = 1, ..., n, draw Fij,b from the estimated posterior distribution

πpost
(
Fij|F̃ij; ϑ̃

)
as in Equation (7).

(b) Compute γb = g
(
{Fij,b}ni,j=1 , θ

)
.

4. Sort {γb}Bb=1 to obtain
{
γ(b)
}B
b=1

with γ(1) ≤ γ(2) ≤ ... ≤ γ(B).

5. Report
[
γ(α/2·B), γ((1−α/2)·B)

]
.

Remark 1. One can verify how reasonable the normality assumption on the prior and mea-

surement error model is by comparing the histogram of the normalized residuals

 log F̃ij −
{
β̃ log distij + α̃orig

i + α̃dest
j

}
√
s̃2ij + ς̃2ij


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with the probability density function of a standard normal distribution. To further check

the reasonableness of the gravity prior, we can look at the adjusted R-squared of the gravity

model and, following Allen and Arkolakis (2018), plot the log flows against the log distance for

positive flows, after partitioning out the origin and destination fixed effects. In Appendices

D and E I perform both these checks for my applications.

Remark 2. One might be worried about misspecification of the prior and measurement error

model. For the normal-normal model, we can use prior density-ratio classes to find worst-

case bounds on posterior quantiles over a neighborhood that contains distributions that are

not too far away from the assumed normal distribution for the prior and measurement error

model. It turns out that incorporating uncertainty around the prior and measurement error

model amounts to reporting slightly wider quantiles. The details can be found in Appendix

F.

4.2 Empirical Bayes Estimation Step: Calibrating ϑ

The hyperparameters in ϑ need to be calibrated. In consider two cases.

4.2.1 Baseline Case with Domain Knowledge

In the baseline case I restrict the measurement error variances and prior variances to be

constant across flows so that ς2ij = ς2 and s2ij = s2 for all i, j = 1, ..., n. Furthermore,

I require knowledge of the common measurement error variance ς2 and of the Bernoulli

parameters {pij} and {bij}.8 It then remains to estimate
(
β,
{
αorig
i

}
,
{
αdest
i

}
, s2
)
. Towards

this, we can combine the equations in Assumption 2 to find

log F̃ij ∼ N
(
β log distij + αorig

i + αdest
j , s2 + ς2

)
, F̃ij > 0.

8In the absence of a prior on the measurement error variance, one could adopt a sensitivity analysis
approach by varying the variance to determine the minimum level of measurement error that would overturn
the counterfactual conclusion.
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Using maximum likelihood estimation, it follows that the prior mean parameters can be

estimated from the regression

log F̃ij = β log distij + αorig
i + αdest

j + ϕij, F̃ij > 0,

with ϕij an error term. It follows that the estimated prior means and variance are

µ̃ij = β̃ log distij + α̃orig
i + α̃dest

j , i, j = 1, ..., n (8)

s̃2 = max
{
Ṽar

(
log F̃ij − µ̃ij|F̃ij > 0

)
− ς̃2, 0

}
. (9)

Obtaining estimators for these prior means and variances is what Walters (2024) calls the

deconvolution step.

4.2.2 Mirror Trade Data

When the non-negative bilateral flows correspond to trade flows between countries, I use the

mirror trade dataset from Linsi, Burgoon, and Mügge (2023) to calibrate ϑ. This dataset

has two estimates of each bilateral trade flow, both as reported by the exporter and as

by the importer. Linsi, Burgoon, and Mügge (2023) shows that there are so-called mirror

discrepancies in bilateral trade flows between almost all countries. This means that, for

instance, while the value that Germany reports it imported from France and the value

that France reports it exported to Germany should be the same, in practice they are often

different. I interpret this as observing two independent noisy observations per time period

for each bilateral trade flow. The key identifying assumptions are that the flow-specific

probabilities of true zeros, the flow-specific probabilities of spurious zeros, and the flow-

specific measurement error variances are constant over time.

The details for the calibration can be found in Appendix G. I first calibrate the probabil-

ities of true zeros {pij} and the probabilities of spurious zeros {bij} by noting that for each

bilateral trade flow we can use the time variation to identify the probabilities of observing a
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certain number of zeros. I then leverage the model structure to calibrate the measurement

error variances
{
ς2ij
}
. Lastly, I calibrate the prior parameters, which are period-specific

in this case, using a similar approach as for the baseline case with domain knowledge.

To leverage country information and the fact that importers and exporters can differ in

their reliability, I shrink the measurement error and prior variances using country-origin and

country-destination fixed effects.

4.3 Toolkit

Accompanying the paper, I provide an easy-to-use toolkit that consists of three programs.9

The first program implements the high-level approach in Algorithm 1. It takes as inputs(
B, θ, D̃, πpost

(
D|D̃; ϑ̃

)
, g
)
and outputs posterior draws {γb}Bb=1. The second program im-

plements the default approach in Algorithm 2. It takes as inputs
(
B, θ,

{
F̃ij

}
, ϑ̃, g

)
and

again outputs posterior draws {γb}Bb=1. The third program, which can serve as an input to

the second, uses the mirror trade dataset of Linsi, Burgoon, and Mügge (2023) and allows

the researcher to choose countries and years for which they want to estimate the hyperpa-

rameters of the prior and measurement error model. This is summarized in Algorithm 3.

5 Illustrative Example: Armington Model

This section illustrates the proposed procedure using the Armington model (Armington,

1969), a canonical workhorse model in international trade, as outlined, for example, in

Costinot and Rodŕıguez-Clare (2014).

9The toolkit is written in MATLAB and can be found on my website, https://sandersbas.github.io/. A
version in R is available upon request.
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Algorithm 3 Toolkit

1. Program 1: General algorithm.

• Input: number of draws B, structural parameter θ, data D̃, functions D̃ 7→ Db,
(D, θ) 7→ γ.

• Output: posterior draws {γb}Bb=1.

2. Program 2: Default approach.

• Input: number of draws B, structural parameter θ, noisy flows
{
F̃ij

}
, estimated

hyperparameters ϑ̃, function ({Fij} , θ) 7→ γ.

• Output: posterior draws {γb}Bb=1, plot that compares histogram of the normalized
residuals with the probability density function of a standard normal distribution
as per Remark 1.

3. Program 3: Mirror trade data calibration.

• Input: countries I, years to produce bootstrap draws for T , years to use for
calibration Tcalibration.

• Output: noisy flows
{
F̃ij

}
, estimated hyperparameters ϑ̃, adjusted R-squared of

the gravity model for the last year in T , plot of log flows against log distance for
positive flows, after partitioning out the origin and destination fixed effects as per
Remark 1.

5.1 Model and Counterfactual Question of Interest

Countries are indexed by i, j = 1, ..., n, and with CES preferences and perfect competition,

it follows that the relevant gravity equations and budget constraints are:

Fij =
(τijYi)

−ε χij∑
k (τkjYk)

−ε χkj

Ej, i, j = 1, ..., n (10)

Ei = (1 + κi)Yi, i = 1, ..., n. (11)

Here, Fij denotes the trade flow from country i to j, and Yi =
∑n

ℓ=1 Fiℓ, Ei =
∑n

k=1 Fki and

κi = (Ei − Yi) /Yi denote country i’s total income, total expenditure and the ratio of the

trade deficit to income, respectively. Furthermore, τij denotes the iceberg trade cost between

country i and j, which means that in order to sell one unit of a good in country j, country
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i must ship τij ≥ 1 units, with τii = 1. Lastly, ε > 0 is the trade elasticity and {χij} are

idiosyncratic preferences.

Now, say we are interested in the counterfactual where we change the trade costs {τij}

proportionally by
{
τ cf,propij

}
, holding the trade elasticity ε, the idiosyncratic preferences {χij}

and the trade imbalance variables {κi} constant. In Appendix H.1 I show that we can then

solve for the corresponding proportional changes in income,
{
Y cf,prop
i

}
, using

Y cf,prop
i Yi =

∑
j

(
τ cf,propij Y cf,prop

i

)−ε

∑
k λkj

(
τ cf,propkj Y cf,prop

k

)−ελij (1 + κj)Y
cf,prop
j Yj, i = 1, ..., n,

where λij = Fij/Ej denotes the expenditure share that country j spends on goods from

country i. By Walras’ Law, the proportional changes in income are only pinned down up to

a multiplicative constant. Subsequently, following Costinot and Rodŕıguez-Clare (2014), we

can exactly solve for proportional changes in expenditure shares and welfare levels:

λcf,prop
ij =

(
τ cf,propij Y cf,prop

i

)−ε

∑
k λkj

(
τ cf,propkj Y cf,prop

k

)−ε , i, j = 1, ..., n

W cf,prop
i =

(
λcf,prop
ii

)−1/ε

, i = 1, ..., n.

The income levels {Yi}, the expenditure shares {λij} and the trade deficit variables {κi} are

all functions of the trade flows {Fij}, so the relevant counterfactual mapping is

{Fij} ,
{
τ cf,propij

}
, ε 7→

{
W cf,prop

i

}
.

It follows that for a given counterfactual question as described by
{
τ cf,propij

}
, we only require
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knowledge of the baseline trade flows {Fij} and the trade elasticity ε. So we have:

D = {Fij}

θ = ε.

The specific counterfactual question I consider is a 10% increase in all bilateral trade costs

between 76 countries, so that τ cf,propij = 1 + 0.1 · I {i ̸= j} for i, j = 1, ..., n. I focus on the

proportional changes in welfare in the Central African Republic, the Netherlands, Sweden

and the United States. It follows that, fixing
{
τ cf,propij

}
, we have

γq = 100 ·
(
W cf,prop

q − 1
)
≡ gq ({Fij} , ε) , (12)

for each q ∈ {CAF,NLD, SWE,USA}.

5.2 Measurement Error Model and Prior

For the Armington model, I will consider measurement error in trade flows {Fij}. Hence,

instead of the true trade flows we observe noisy trade flows
{
F̃ij

}
, which in turn lead to

noisy counterfactual predictions γ̃q for q ∈ {CAF,NLD, SWE,USA}.

If we specify a prior πprior ({Fij} ;ϑ) and a measurement error model πme
({

F̃ij

}
| {Fij} ;ϑ

)
,

we can use empirical Bayes estimation and Bayes’ rule to find the estimated posterior

πpost
(
{Fij} |

{
F̃ij

}
; ϑ̃
)
. The default approach from Section 4 can be applied. For the em-

pirical Bayes step, the calibration of ϑ, we can use the mirror trade data setting from Section

4.2.2. So we can use the provided toolkit to obtain draws from πpost
(
{Fij} |

{
F̃ij

}
; ϑ̃
)
. I fix

the trade elasticity to ε = 5, a typical value in the literature which is also used in Costinot

and Rodŕıguez-Clare (2014).
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5.3 Results

We can see the impact of measurement error in Table 1 and Figure 1. In Table 1 I compare

the standard point estimates based on noisy flows and the posterior median estimates, and

report the intervals obtained using Algorithm 2. In Figure 1 I plot the standard point

estimates and the smoothed estimated posterior distributions.

We observe that for the Central African Republic and the Netherlands there is a consid-

erable bias correction, causing the point estimate to lie outside the credible set. For Sweden

and the United States there is less of a bias correction. These plots illustrate that the pro-

posed approach automatically incorporates bias that is caused by measurement error, and

that this bias can be both negative and positive. In Appendix H.2, I show the results for all

76 countries in the sample.

Point estimate
g
({

F̃ij

}
, 5
) Median of

πpost
(
g ({Fij} , 5) |

{
F̃ij

}
; ϑ̃
) Interval accounting for

measurement error

γCAF -1.09 -0.26 [-0.42, -0.14]
γNLD -5.15 -6.57 [-7.10, -6.04]
γSWE -3.25 -3.51 [-3.79, -3.25]
γUSA -1.07 -1.01 [-1.27, -0.56]

Table 1: Uncertainty quantification for the Armington model. The counterfactual object of
interest is the change in welfare after a 10% increase in all bilateral trade costs. The intervals
based on measurement error report the 2.5th and 97.5th quantile of the estimated posterior

distribution πpost
(
g ({Fij} , 5) |

{
F̃ij

}
; ϑ̃
)
.

6 Applications

In this section I discuss the applications in Adao, Costinot, and Donaldson (2017) and Allen

and Arkolakis (2022). In both cases, accounting for measurement error leads to substantial

uncertainty around the counterfactual predictions.
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Figure 1: Uncertainty quantification for the Armington model. The counterfactual object
of interest is the change in welfare after a 10% increase in all bilateral trade costs. The

solid blue line denotes the point estimate g
({

F̃ij

}
, 5
)
, and the dashed red line denotes the

smoothed estimated posterior distribution πpost
(
g ({Fij} , 5) |

{
F̃ij

}
; ϑ̃
)
.

6.1 Application 1: Adao, Costinot, and Donaldson (2017)

6.1.1 Model and Counterfactual Question of Interest

The empirical application of Adao, Costinot, and Donaldson (2017) investigates the effects of

China joining the WTO, the so-called China shock. Specifically, the authors examine what

would have happened to China’s welfare if China’s trade costs had stayed constant at their

1995 levels. They consider n countries and T time periods. The exercise I am considering is

assessing the sensitivity of counterfactual predictions to measurement error in bilateral trade

flows.

The counterfactual objects of interest is the change in China’s welfare, defined as the

percentage change in income that the representative agent in China would be indifferent

about accepting instead of the counterfactual change where China’s trade costs are fixed at
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their 1995 levels. The details of the model can be found in Appendix D.1.10 The key insight

is that we can express the proportional change in China’s welfare in period t, denoted by

W cf,prop
China,t, as a function of all the bilateral trade flows in different periods {Fij,t} and the trade

elasticity ε. Hence, we can write

W cf,prop
China,t = gt ({Fij,t} , ε) , (13)

for t = 1, ..., T and known functions gt : RTn(n−1)
+ × R++ → R. Then, conditional on a

prior distribution for the true bilateral flows {Fij,t} and a measurement error model, we can

quantify uncertainty for
{
W cf,prop

China,t

}
.

6.1.2 Measurement Error Model and Prior

The default approach from Section 4 can be applied. For the empirical Bayes step, the

calibration of ϑ, we can use the mirror trade data setting from Section 4.2.2. Since there are

no zero flows in this application, the estimated posterior of interest is

Fij,t|F̃ij,t ∼ exp

{
N

(
s̊2ij

s̊2ij + ς̊2ij
log
(
F̃ij,t

)
+

ς̊2ij
s̊2ij + ς̊2ij

µ̃ij,t,

(
1

s̊2ij
+

1

ς̊2ij

)−1
)}

,

where
{
s̊2ij
}
,
{
ς̊2ij
}
,
{
F̃ij,t

}
and {µ̃ij,t} are all defined in Appendix G.

6.1.3 Results

Having obtained a posterior distribution for the true trade flows given the noisy trade flows,

we can now quantify uncertainty about the counterfactual predictions of interest. In Figure

2, I reproduce Figure 3 of Adao, Costinot, and Donaldson (2017), which plots the percentage

change in China’s welfare as a result of the China shock for each year in the period 1996-2011,

and include two 95% intervals.

10In Adao, Costinot, and Donaldson (2017), the authors consider two demand systems: standard CES and
“Mixed CES.” I focus on the standard CES specification.
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The first only considers estimation error and hence assumes the data are perfectly mea-

sured. It is constructed using code provided by the authors, and samples from the normal

distribution with mean and variance equal to the GMM estimator for the trade elasticity

ε and its sampling variance, respectively. The resulting intervals are small for the period

before the year 2000, and then slowly become wider. These are the intervals reported in

Adao, Costinot, and Donaldson (2017).

The second region considers only measurement error and no estimation error in ε. The

resulting intervals are considerably wider than the intervals based on estimation error, es-

pecially in the first few years. In Appendix D.3 I perform additional analyses to check the

robustness of these results.

Figure 2: Uncertainty quantification for heteroskedastic normal shocks to {logFij,t} for the
change in China’s welfare due to the China shock. The solid blue line is the estimate as
reported in Adao, Costinot, and Donaldson (2017), the dotted light-blue lines denote the in-
tervals accounting for estimation error as reported in Adao, Costinot, and Donaldson (2017),
and the dashed red lines denote the intervals based on the estimated posterior distributions

πpost
(
gt ({Fij,t} , ε) |

{
F̃ij,t

}
; ϑ̃
)
for t = 1, ..., T .
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6.2 Application 2: Allen and Arkolakis (2022)

6.2.1 Model and Counterfactual Question of Interest

The empirical application in Allen and Arkolakis (2022) aims to estimate the returns on

investment for all highway segments of the US Interstate Highway network. The authors do

so by introducing an economic geography model and calculating what happens to welfare

after a 1% improvement to all highway links. Combining these counterfactual welfare changes

with how many lane-miles must be added in order to achieve the 1% improvement, they find

the highway segments with the greatest return on investment.

This exercise only requires data on incomes and traffic flows of the n locations and

knowledge of four structural model parameters. The details of the model can be found in

Appendix E.1, but the key relation is the one that maps the average annual daily traffic

(AADT) flows {Fij} to the counterfactual return on investments
{
Rcf

kℓ

}
, which is

Rcf
kℓ = gkℓ ({Fij} , θ)

for known functions gkℓ : Rn(n−1)
+ ×Θ → R for k, ℓ = 1, ..., n.

6.2.2 Measurement Error Model and Prior

For this application we can again apply the default approach from Section 4. For the empirical

Bayes step we can use the baseline case from Section 4.2.1. There are no zeros so we only

have to provide an estimate of the measurement error variance ς2. Musunuru and Porter

(2019) estimates that the measurement error variance of the logarithm of the average annual

daily traffic (AADT) flows, which is exactly the data that Allen and Arkolakis (2022) uses,

is between 0.05 and 0.20. To obtain a lower bound on uncertainty, I will use a uniform

measurement error variance of 0.05.

With ς̃2 = 0.05, I use Equation (9) to find a prior variance of s̃2 = 0.101. This results in

the following estimated posterior distribution for the true traffic flow between country i and
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j, Fij, given its noisy version F̃ij, for i, j = 1, ..., n:

Fij|F̃ij ∼ exp
{
N
(
0.669 · log F̃ij + 0.331 · µ̃ij, 0.033

)}
,

where µ̃ij is defined in Equation (8).

6.2.3 Results

The counterfactual question of interest is which links have the highest return on investment,

and the authors of Allen and Arkolakis (2022) report the top ten links. For exposition, I will

focus my analysis on the three best performing links. Table 2 shows the 95% intervals for

the top three links based on Algorithm 2.

Point estimate
Interval accounting for
measurement error

Link 1 10.43 [8.69, 14.15]
Link 2 9.54 [7.31, 10.83]
Link 3 7.31 [6.78, 8.18]

Table 2: Uncertainty quantification for the return on investment for the three links from Allen
and Arkolakis (2022) with the highest return on investment. Link 1 is Kingsport-Bristol (TN-
VA) to Johnson City (TN), link 2 is Greensboro-High Point (NC) to Winston-Salem (NC)
and link 3 is Rochester (NY) to Batavia (NY). The intervals based on measurement error
report the 2.5th and 97.5th quantile of the estimated posterior distributions.

From a policy perspective it is of interest whether the ranking between these links can

change due to measurement error. Therefore, Table 3 shows the 95% intervals for the dif-

ference between link 1 and link 2, and the difference between link 2 and link 3.11 It follows

that the rankings are generally robust against measurement error. Additional discussion and

analyses can be found in Appendices E.2 and E.3.

11This simple exercise is intended purely for exposition. For a more formal treatment of inference on ranks,
see Mogstad et al. (2024).
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Point estimate
Interval accounting for
measurement error

Link 1-Link 2 0.89 [0.38, 5.39]
Link 2-Link 3 2.23 [-0.05, 3.27]

Table 3: Uncertainty quantification for the differences in return on investment between the
three links from Allen and Arkolakis (2022) with the highest return on investment. Link
1 is Kingsport-Bristol (TN-VA) to Johnson City (TN), link 2 is Greensboro-High Point
(NC) to Winston-Salem (NC) and link 3 is Rochester (NY) to Batavia (NY). The intervals
based on measurement error report the 2.5th and 97.5th quantile of the estimated posterior
distributions.

7 Conclusion

This paper develops an econometric framework for quantifying the impact of measurement

error in a broad class of quantitative trade and spatial models. Unlike standard econometric

models of measurement error, the counterfactual estimand in these models depends directly

on the realized data rather than on the underlying distribution. I adopt an empirical Bayes

approach to characterize uncertainty in counterfactual predictions and propose a default

specification that can be easily implemented across a range of applications. Applying the

framework to the settings in Adao, Costinot, and Donaldson (2017) and Allen and Arkolakis

(2022), I find substantial uncertainty surrounding key economic outcomes. These results

underscore the need to account for measurement error when using quantitative models to

guide policy decisions.

References

Adao, R., A. Costinot, and D. Donaldson (2017): “Nonparametric counterfactual

predictions in neoclassical models of international trade,” American Economic Review,

107, 633–689.

Adão, R., A. Costinot, and D. Donaldson (2023): “Putting Quantitative Models to

29



the Test: An Application to Trump’s Trade War,”Technical report, National Bureau of

Economic Research.

Allen, T., and C. Arkolakis (2018): “13 Modern spatial economics: a primer,”World

Trade Evolution, 435.

(2022): “The welfare effects of transportation infrastructure improvements,” The

Review of Economic Studies, 89, 2911–2957.

Ansari, H., D. Donaldson, and E. Wiles (2024): “Quantifying the Sensitivity of

Quantitative Trade Models.”

Arkolakis, C., A. Costinot, and A. Rodŕıguez-Clare (2012): “New trade models,
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Appendix

A Finding g in Two Leading Classes of Models

This section informally discusses how to find the function g for two leading classes of models,

namely invertible models and exact hat algebra models. To make this distinction clear it

is useful to introduce fundamentals X ∈ X ⊆ RdX , which are parameters that are linked

deterministically to the data D. Examples of fundamentals in quantitative trade and spatial

models are trade costs and productivity levels. For example in the Armington model in Sec-

tion 5, the fundamentals are X = ({τij} , {χij} , {κi}). In contrast, the structural parameter

θ is a function of the distribution of the data PD.

We are then generally interested in the effect of proportional changes to the funda-

mentals X. Denote these proportional changes by Xcf,prop ∈ RdX . For example in the

Armington model in Section 5, the proportional changes in fundamentals are Xcf,prop =

({1 + 0.1 · I {i ̸= j}} , {1} , {1}). In particular, we want to find the corresponding propor-

tional changes to the observed data, Dcf,prop ∈ RdD . Our scalar prediction of interest, γ, will

then be some function of
(
Xcf,prop, D, θ,Dcf,prop

)
. Hence, it suffices to focus attention on the

mapping

Xcf,prop, D, θ 7→ Dcf,prop. (14)

I will now argue that both invertible models and exact hat algebra models satisfy this map-

ping, which makes them essentially equivalent for the purposes of uncertainty quantification.

A.1 Invertible Models

Redding and Rossi-Hansberg (2017) define a model to be invertible if there exists a one-to-

one mapping from the observed data and structural parameter to the fundamentals. Once

we have obtained the levels of the fundamentals, we can apply the proportional change of
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interest and find the corresponding proportional changes to the observed data. The high-level

steps of this approach are:

1. “Back out” the levels of the fundamentals X using the observed data D and the struc-

tural parameter θ.

2. Find the counterfactual levels of the data D � Dcf,prop from the counterfactual levels

of the fundamentals X � Xcf,prop and the structural parameter θ, where � denotes

element-wise multiplication.12

3. Find counterfactual changes variables Dcf,prop using the counterfactual levels of the

data D � Dcf,prop and the baseline levels of the data D.

Existence of the mapping in Equation (14) follows.

A.2 Exact Hat Algebra Models

Exact hat algebra models (Costinot and Rodŕıguez-Clare, 2014) are models for which the

mapping in Equation (14) holds “directly”, without the intermediary step of backing out the

levels of the fundamentals. The Armington model presented in Section 5 is one such exact

hat algebra model.

B Details for Relation to Dingel and Tintelnot (2025)

B.1 Details for Covariates-Based Approach

The specific form for hij (ϑ) in Equation (5) is

hij (ϑ) =
wε

j

(
rηi δ̄ij

)−ε∑
s,t w

ε
t

(
rηs δ̄st

)−ε ,

12Here, assume that the equilibrium conditions are unique, so that for each (X, θ) there exists a unique D
(possibly up to a multiplicative constant).
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where wj denotes the wage in location j, ri denotes the land rent in location i, δ̄ij de-

notes the time component of commuting cost, ε denotes the commuting elasticity, and

η denotes a Cobb-Douglas preference parameter. Since
{
δ̄ij
}

are known, it follows that

ϑ =
({

αorig
i

}
,
{
αdest
j

}
, ε
)
=
({

r−ηε
i

}
,
{
wε

j

}
, ε
)
.

B.2 Using Matrix Approximation Techniques

In the truncated singular value decomposition approach in Dingel and Tintelnot (2025), the

recommendation is to use an approximated matrix instead of the matrix with noisy flows{
ℓ̃ij

}
. To see this approach can be nested in my Bayesian framework by, defining L̃ ≡

{
ℓ̃ij

}
and L ≡ {ℓij}, consider the following prior and measurement error:


prior :

measurement error :

πprior (L;A) = δA, A ∈ A = {B : rank (B) ≤ τ}

L̃ = L+ ξ, ξij
iid∼ N (0, 1)

. (15)

In this case, the empirical Bayes step solves:

Ã = argmax
A∈A

∫
exp

(
−1

2

∑
i,j

(
L̃ij − Lij

)2)
δA (L) dL

= argmax
A∈A

exp

(
−
∥∥∥L̃ − A

∥∥∥2
F

)
,

where ∥·∥F denotes the Frobenius norm. This maximization problem is equivalent to project-

ing the noisy flows onto the space of matrices that have a rank no larger than τ , which, by

the Eckart–Young–Mirsky theorem, is solved by the truncated singular value decomposition.

This yields the estimated prior and measurement error model


prior :

measurement error :

πprior
(
L; Ã

)
= δÃ, A ∈ A = {B : rank (B) ≤ τ}

L̃ = L+ ξ, ξij
iid∼ N (0, 1)

.
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Using Bayes’ rule we can then find the estimated posterior for the true flows

πpost
(
L|L̃; Ã

)
= δÃ.

So the posterior is a point mass at the counterfactual prediction that uses the approximated

matrix Ã. It follows that the truncated singular value decomposition approach is a special

case of Algorithm 1 by choosing the prior and measurement error model as in Equation (15).

C Details for Estimation Error

The counterfactual prediction of interest will typically depend on a structural parameter θ.

It is common in applied work to plug in a fixed value for the structural parameter taken

from the literature or obtained through data-driven methods, thus ignoring the uncertainty

associated with the estimation process. I will discuss two different approaches to dealing

with estimation error.

C.1 Frequentist Approach to Dealing with Estimation Error

Let θ̃ denote the estimator of the estimand θ. This estimand is usually a function of the

distribution of the data PD. This implies that, to address measurement error affecting the

structural parameter, one can apply the frequentist measurement error techniques discussed

in Section 3.4.1 to find a bias-corrected estimate, though the resulting correction will not

admit a Bayesian interpretation.

C.2 Bayesian Approach to Dealing with Estimation Error

Alternatively, one can take a Bayesian or quasi-Bayesian approach and assume that the

posterior or quasi-posterior distribution of the true structural parameter θ given the data
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D is approximately normal.13 Specifically, we have the estimation error posterior (with

superscript “post,ee”)

πpost,ee (θ|D) ≈ N
(
θ̃ (D) , Σ̃ (D)

)
, (16)

where Σ̃ (D) is a consistent estimator of the sampling variance of θ̃ (D).14

We can then generate draws from the posterior distribution of θ given D.15 For each of

these draws, we can calculate the corresponding value of the counterfactual object of interest

using the relationship γ = g (D, θ). This allows us to find the posterior distribution of γ

given the true data, πpost,ee (γ|D).

C.2.1 Combining Measurement Error and Estimation Error

The object of interest is a function of the true data and the structural parameter. It follows

that we must consider estimation error, the direct effect of mismeasurement, and the indirect

effect of mismeasurement through the estimation procedure. Our goal is to quantify uncer-

tainty about γ when we observe D̃ by accounting for these various sources of uncertainty.

Recall that we have obtained two different posteriors. The first one is the posterior

distribution of γ given the true data, πpost,ee (γ|D), which incorporates estimation error. The

second one is the posterior of the true data given the noisy data, πpost,me
(
D|D̃; ϑ̃

)
, which

incorporates measurement error (with superscript “post,me”). We can combine these two

posteriors uncertainty quantification and point estimation for γ.16

13Formally, this normality could follow from assumptions on the underlying data generating process such
that a Bernstein-von Mises type result holds (Van der Vaart, 2000). In that case the influence of the
prior distribution π (θ) becomes negligible and the posterior distribution approximately equals a normal
distribution centered at the maximum likelihood estimator. In Sanders (2025) I engage further with structural
estimation in quantitative trade and spatial models.

14This notation nests the scenario where we use an estimator from another study that used different data.

In that case θ is independent from D and we would write πpost,ee (θ|D) ≈ N
(
θ̃, Σ̃

)
. Furthermore, in the

case where θ is known to be non-negative, one can use a log-normal distribution here.
15Note that this assumption is on the structural parameter θ, and not on the fundamentals as discussed in

Appendix (A). One could additionally use a degenerate posterior πpost,ee (X|D) = δX on these fundamentals,
since they are parameters that are linked deterministically to the data D, and hence there is no estimation
error.

16Note that one could in principle use a single prior π on the underlying data generating process to handle
both estimation error and measurement error. I instead combine two simple priors to separately handle
estimation error and measurement error, since this leads to highly tractable procedures, albeit at the cost of
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For uncertainty quantification, I recommend to report an interval C to which, in posterior

expectation over D, the posterior πpost,ee (γ|D) assigns probability 1− α:

Eπpost,me

[
Prπpost,ee {γ ∈ C|D} |D̃; ϑ̃

]
≥ 1− α.

In practice, given D̃ one would generate draws from πpost,me
(
D|D̃; ϑ̃

)
, and for each of these

draws obtain a corresponding draw from πpost,ee (γ|D).17 Then, one would report the α/2

and 1− α/2 quantiles of this second set of draws.18 This is summarized in Algorithm 4.

Algorithm 4 Uncertainty quantification about γ = g (D, θ)

1. Input: prior πprior (D;ϑ), measurement error model πme
(
D̃|D;ϑ

)
, quasi-posterior

πpost,ee (θ|D), noisy data D̃, number of bootstrap draws B, coverage level 1−α (choose
B and α such that α/2 ·B ∈ N).

2. Empirical Bayes estimation step: ϑ̃ = argmax
ϑ

∫
πme

(
D̃|D;ϑ

)
πprior (D;ϑ) dD.

3. Construct estimated posterior: πpost,me
(
D|D̃; ϑ̃

)
∝ πme

(
D̃|D; ϑ̃

)
πprior

(
D; ϑ̃

)
.

4. For b = 1, ..., B,

(a) Draw Db ∼ πpost,me
(
D|D̃; ϑ̃

)
.

(b) Draw θb ∼ πpost,ee (θ|Db).

(c) Compute γb = g (Db, θb) .

5. Sort {γb}Bb=1 to obtain
{
γ(b)
}B
b=1

with γ(1) ≤ γ(2) ≤ ... ≤ γ(B).

6. Report
[
γ(α/2·B), γ((1−α/2)·B)

]
.

As in Section 3.3, a natural point estimator for the structural parameter is the median

complicating the Bayesian interpretation of resulting intervals.
17If an estimator from another study is used, then πpost,ee (θ|D) ≈ N

(
θ̃, Σ̃

)
. In that case, we can draw

θb and Db separately, which makes the algorithm much faster.
18When obtaining draws from πpost,me

(
D|D̃; ϑ̃

)
is computationally expensive, it could help improve com-

putational speed to take multiple draws of θb for the same Db.
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of the estimated posterior of the structural parameter given the noisy data,

πpost
(
θ|D̃; ϑ̃

)
=

∫
πpost,ee (θ|D) πpost,me

(
D|D̃; ϑ̃

)
dD,

and a natural point estimator for the counterfactual prediction is the median of the estimated

posterior,

πpost
(
γ|D̃; ϑ̃

)
=

∫
πpost,ee (γ|D) πpost,me

(
D|D̃; ϑ̃

)
dD.

These posterior medians can be calculated using the draws obtained in steps 4b and 4c in

Algorithm 4, respectively.

C.2.2 Frequentist Consistency

A caveat of the proposed Bayesian approach to dealing with estimation error is that it will

not guarantee frequentist consistency of the estimator. To see this, consider the stylized

model where we have measurement error in the independent variable of a simple regression:


Regression :

Measurement error :

Prior :

θ = Cov(Yi,Xi)
Var(Xi)

X̃i = Xi + εi

Xi = βZi + νi

,

for εi, Zi, νi mean-zero normal random variables. We would then estimate the hyperparam-

eter β by noting that

X̃i = βZi + νi + εi,

and we would use the estimator

β̃ =
Ĉov

(
X̃i, Zi

)
V̂ar (Zi)

p→ β +
Cov (νi + εi, Zi)

Var (Zi)
.
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Under this setup, for some posterior weight wpo ∈ [0, 1], draws from the posterior X∗
i ∼

πpost
(
Xi|X̃i, Zi; β̃

)
can be represented as

X∗
i = wpo · X̃i + (1− wpo) · β̃Zi

p→ wpo · X̃i + (1− wpo) · βZi + (1− wpo)
Cov (νi + εi, Zi)

Var (Zi)
Zi

= Xi + wpo · εi − (1− wpo) · νi + (1− wpo)
Cov (νi + εi, Zi)

Var (Zi)
Zi︸ ︷︷ ︸

≡pi

.

Here, pi captures the deviation of the posterior draw from the truth, which has mean zero

but non-zero variance. The probability limit of the regression coefficient based on posterior

draws then satisfies

Cov (Yi, X
∗
i )

Var (X∗
i )

p→ Cov (Yi, Xi + pi)

Var (Xi + pi)
,

which does not generally equal θ = Cov(Yi,Xi)
Var(Xi)

.

D Details for Application Adao, Costinot, and Donaldson

(2017)

D.1 Model Details

In the empirical application of Adao, Costinot, and Donaldson (2017), the authors investigate

the effects of China joining the WTO, the so-called China shock. Going forward, Qi,t denotes

the factor endowment of country i in period t, τij,t denotes the trade cost between country i

and j in period t, λij,t denotes the expenditure share from country i in country j in period t,

Yi,t denotes the income of country i in period t, and Pi,t denotes the factor price of country

i in period t. Furthermore, ρi,t denotes the difference between aggregated gross expenditure

and gross production in country i in period t, which is assumed to stay constant for different

counterfactuals. Lastly, ε denotes the trade elasticity and χi (·) denotes the factor demand
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system of country i.

In Adao, Costinot, and Donaldson (2017), two demand systems are considered, normal

CES and “Mixed CES”. I will focus on normal CES, so that

λij,t = χi ({δij,t}) =
exp {δij,t}

1 +
∑

ℓ>1 exp {δiℓ,t}
,

for δij,t some transformation of factor prices. The function χ−1
i (·) then maps the observed

expenditures shares to values of this transformation. The structural parameter ε is estimated

by assuming a model on the unobserved trade costs {τij,t}, and is estimated using GMM with

as an input the expenditure shares {λij,t}.

The counterfactual question of interest is what the change in China’s welfare is due to

joining the WTO. This question is modeled by choosing the counterfactual proportional

changes in trade costs,
{
τ cf,propij,t

}
, such that Chinese trade costs are brought back to their

1995 levels:

τ cf,propij,t =
τij,95
τij,t

, if i or j is China,

τ cf,propij,t = 1, otherwise.

Welfare is then defined as the percentage change in income that the representative agent

in China would be indifferent about accepting instead of the counterfactual change in trade

costs from {τij,t} to
{
τ cf,propij,t τij,t

}
. These proportional changes in China’s welfare

{
W cf,prop

China,t

}
can be obtained from first solving for

{
P cf,prop
i,t

}
using the system of equations

∑
j

exp
{
χ−1
i ({λij,t})− ε log

(
P cf,prop
i,t τ cf,propij,t

)}
1 +

∑
ℓ>1 exp

{
χ−1
ℓ ({λij,t})− ε log

(
P cf,prop
ℓ,t τ cf,propℓj,t

)} {P cf,prop
j,t Yj,t + ρj,t

}
= P cf,prop

i,t Yi,t,
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and then using

W cf,prop
i,t = 100 ·

P cf,prop
i,t

∑
ℓ

[
χ−1
ℓ ({λij,t})

]−ε∑
ℓ

[
P cf,prop
ℓ,t τ cf,propiℓ,t ({λij,t})

]−ε − 1

 .

D.2 Calibration Procedure and Computational Details

The default approach from Section 4 can be applied. For the empirical Bayes step, the

calibration of ϑ, we can use the mirror trade data setting from Section 4.2.2.

In preprocessing the mirror trade dataset from Linsi, Burgoon, and Mügge (2023) I made

some additional assumptions. Firstly, I only consider data from the period that is considered

in Adao, Costinot, and Donaldson (2017). Secondly, I only consider trade flows between

countries that the authors of that paper consider. This amounts to aggregating Belgium

and Luxembourg, and Estonia and Latvia. All the remaining countries I aggregate to “Rest

of World”. Thirdly, when only one of the mirror trade flows is reported, I interpret this as

zero measurement error by setting the unknown mirror trade flow equal to the observed one.

Relatedly, when both mirror trade flows are not reported, I interpret this as there being no

trade, and when one trade flow is zero and the other is substantially larger than zero, I set

the zero trade flow equal to the non-zero one. Lastly, I follow Adao, Costinot, and Donaldson

(2017) by setting zero trade flows to 0.0025 (million USD). There are however only a handful

of zeros due to the aggregation into “Rest of World”.

When estimating the prior distribution of the true underlying trade flows, I use the

distance dataset from Mayer and Zignago (2011). For the distance between countries and

the “Rest of World”, I take the average of the distances to all other countries that are

considered in Adao, Costinot, and Donaldson (2017).

An important consideration is that there is a substantial difference between the trade flows

used in Adao, Costinot, and Donaldson (2017), which come from the World Input Output

Dataset (WIOD), and the mirror trade flows from Linsi, Burgoon, and Mügge (2023), which
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are based on the IMF Direction of Trade Statistics dataset. To overcome this discrepancy,

I scale the mirror trade data to make them comparable to the trade flows from WIOD. I

set F̃ 1,ACD
ij,t = F̃ACD

ij,t and F̃ 2,ACD
ij,t = F̃ 2

ij,t · F̃ACD
ij,t /F̃ 1

ij,t, for F̃ACD
ij,t the noisy trade flow as used

in Adao, Costinot, and Donaldson (2017). There were also some trade flows in the mirror

trade dataset that reported zeros but had a large trade flow in the WIOD. For these trade

flows, I set the zero mirror trade data entries equal to the positive WIOD entry.

D.3 Supplementary Analyses

D.3.1 Winsorized Measurement Error Variances

The distribution of measurement error variances has a heavy right tail, with the noisiest

bilateral trade flow the one from Mexico to Australia with a measurement error variance of

1.42. One might be worried that this heavy tail drives the sensitivity to mismeasurement.

Figure 3 replicates Figure 2 but now winsorizing the measurement error variances at 0.2,

but keeping the posterior variances constant. This amounts to winsorizing 27% of the trade

flows. There are no substantial differences between Figures 3 and 2.

D.3.2 Testing Normality Assumption and Gravity Model for the Prior

As outlined in Remark 1, we can check how reasonable the normality assumption is by

comparing the histogram of the normalized residuals with the probability density function

of a standardized normal distribution. The result can be found in Figure 4. It follows that

the normality assumption seems reasonable.

Concerning the gravity model, restricting attention to the year 2011, the regression for

the prior mean in Equation (18) has an adjusted R-squared of 0.95, and the coefficient on

log distance is -0.277 with a t-statistic of 3.346. Furthermore, Figure 5 follows Allen and

Arkolakis (2018) by plotting a linear and nonparametric fit of log trade flows against log

distance, after partitioning out the origin and destination fixed effects. Together, the high

adjusted R-squared and the good performance of the linear fit imply that the gravity model
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is a reasonable choice for this setting.

E Details for Application Allen and Arkolakis (2022)

E.1 Model Details

In the empirical application of Allen and Arkolakis (2022), the authors investigate what

the returns on investment are of all the highway segments of the US Interstate Highway

network. Going forward, L̄ denotes aggregate labor endowment, Ȳ denotes total income in

the economy, Qi denotes the productivity of location i, Ai captures the level of amenities

in location i, τij denotes the travel cost between locations i and j, Fij denotes the traffic

flow between locations i and j, yi denotes total income of location i as a share of the total

income in the economy, ℓi denotes the total labor in location i as a share of the aggregate

labor endowment, and χ captures the (inverse of) the welfare of the economy. The parameter

vector is θ = (α, β, γ, ν), where α and β control the strength of the productivity and amenity

externalities respectively, γ is the shape parameter of the Fréchet distributed idiosyncratic

productivity shocks, and ν governs the strength of traffic congestion.

It is shown in the paper that we can uniquely recover
({

ycf,propi

}
,
{
ℓcf,propi

}
, χcf,prop

)
given any change in the underlying infrastructure network

{
τ cf,propij

}
and baseline economic
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activity
{
yiȲ
}
, using the system of equations

(
ycf,propi

) 1+ν+γ
1+ν

(
ℓcf,propi

)−θ(1+α+ν(α+β))
1+ν

= χcf,prop

(
yiȲ

yiȲ +
∑

k Fik

)(
ycf,propi

) 1+ν+γ
1+ν

(
ℓcf,propi

) γ(β−1)
1+ν

+
∑
j

(
Fij

yiȲ +
∑

k Fik

)(
τ cf,propij

) −γ
1+ν
(
ycf,propj

) 1+γ
1+ν
(
ℓcf,propj

)−γ(1+α)
1+ν

(
ycf,propi

)−γ+ν
1+ν

(
ℓcf,propi

) γ(1−β−ν(α+β))
1+ν

= χcf,prop

(
yiȲ

yiȲ +
∑

k Fki

)(
ycf,propi

)−γ+ν
1+ν

(
ℓcf,propi

) γ(α+1)
1+ν

+
∑
j

(
Fji

yiȲ +
∑

k Fki

)(
τ cf,propij

) −γ
1+ν
(
ycf,propj

) −γ
1+ν
(
ℓcf,propj

) γ(1−β)
1+ν

.

Having obtained χcf,prop, the proportional counterfactual change in welfare is then calculated

using

W cf,prop =

(
χcf,prop

)1/γ
L̄α+β

.

E.2 Calibration Procedure and Computational Details

The default approach from Section 4 can be applied. For the empirical Bayes step, the

calibration of ϑ, we can use the baseline case with domain knowledge from Section 4.2.1.

When I run the code from Allen and Arkolakis (2022), the returns of investment for the

links systematically differ slightly from the ones in the paper. I scale my estimates so that

the unperturbed estimates align with the ones in the paper.

E.3 Supplementary Analyses

E.3.1 Probability that Rankings are Reversed

We can learn more from the posterior distributions than just intervals. It might be of

interest what the expected probability is that the ranking of the three links are reversed.
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The expected probability that the ranking between link 1 and link 2 is reversed is 0.000, and

the expected probability that the ranking between link 2 and link 3 is 0.030.

E.3.2 Testing Normality Assumption and Gravity Model for the Prior

We can again check the reasonableness of the normality assumption as per Remark 1. The

result can be found in Figure 6, and it follows that the normality assumption is less reasonable

compared to the setting of Adao, Costinot, and Donaldson (2017).

Concerning the gravity model, the regression for the prior mean in Equation (8) has an

adjusted R-squared of 0.9995, and the coefficient on log distance is 1.003 with a t-statistic

of 1138. It follows that log distance is an important driver of log traffic flows, but not in

a negative way as is common in gravity models. Furthermore, Figure 7 follows Allen and

Arkolakis (2018) by plotting a linear and nonparametric fit of log traffic flows against log

distance, after partitioning out the origin and destination fixed effects. Together, the high

adjusted R-squared and the good performance of the linear fit imply that the gravity model

is a reasonable choice for this setting.

F Misspecification of the Measurement Error Model and Prior

We are interested in the potential effects of misspecification of the measurement error model

or prior. Specifically, focusing on the widely applicable default approach from Section 4, we

would like to know how the quantiles of the posterior distribution of the counterfactual object

of interest given the noisy flows change when the assumptions of a normal measurement

error model or a normal prior do not hold. Suppose for exposition that there are no zeros

and the hyperparameters ϑ are known, so that we can obtain the posterior distribution

πpost
(
γ|
{
log F̃ij

})
.
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F.1 Measurement Error Model

Let L ({logFij}) = πme
({

log F̃ij

}
| {logFij}

)
denote the likelihood function of the noisy log

flows
{
log F̃ij

}
given the true log flows {logFij}. For a given c ≥ 1, define a density-ratio

class of distributions to be the set of all conditional distributions for
{
log F̃ij

}
with pdf p

such that

p ∈ Rc =

{
p ∈ P :

1

c
· L (x) ≤ p (x) ≤ c · L (x) ∀x ∈ Rn(n+1)

}
,

for P the set of all pdfs.

For uncertainty quantification, we are interested in the quantiles of the posterior distri-

bution πpost
(
h ({logFij}) |

{
log F̃ij

})
for a generic function h (·). Denote the α-th posterior

quantile based on likelihood p by Qπ,p,h (α).

Proposition 1. We have:

sup
p∈Rc

Qπ,p,h (α) = Qπ,L,h

(
αc2

1− α + αc2

)
inf
p∈Rc

Qπ,p,h (α) = Qπ,L,h

(
α

α + (1− α) c2

)
.

So instead of reporting the interval

[Qπ,L,h (α/2) , Qπ,L,h (1− α/2)]

one could report the robust interval

[
Qπ,L,h

(
α

α + (2− α) c2

)
, Qπ,L,h

(
(2− α) c2

α + (2− α) c2

)]
.

For example for α = 0.05 and c = 1.5, we would consider the 1.1%-quantile and the 98.9%-

quantile, instead of the 2.5%-quantile and the 97.5%-quantile, respectively.
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The result in Proposition 1 follows from noting that

α =

∫ q

−∞
πpost (h (x) |x̃) dh (x) =

∫
x∈h−1([−∞,q])

πpost (x|x̃) dx

⇒
∫
x∈h−1([−∞,q])

p (x)πprior (x) dx =
α

1− α

∫
x ̸∈h−1([−∞,q])

p (x) πprior (x) dx.

Focusing on the upper bound, it follows that we want to choose p (x) on the left-hand side

as small as possible and p (x) on the right-hand side as large as possible for all x:

1

c

∫
x∈h−1([−∞,q∗sup])

L (x) πprior (x) dx =
α

1− α
c

∫
x ̸∈h−1([−∞,q∗sup])

L (x) πprior (x) dx

⇒
∫ q∗sup

−∞
πpost

(
h (x) |

{
log F̃ij

})
dh (x) =

αc2

1− α + αc2
.

F.2 Prior

Note that the likelihood L and the prior πprior enter the posterior in exactly the same way,

so we can interpret the procedure in the previous subsection also as sensitivity analysis with

respect to the prior.

G Calibration with Mirror Trade Data

G.1 Model

I use the mirror trade dataset from Linsi, Burgoon, and Mügge (2023). This dataset has

two estimates of each bilateral trade flow, both as reported by the exporter and as by the

importer. I interpret this as observing two independent noisy observations per time period
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for each bilateral trade flow:

{{
F̃ 1
ij,t, F̃

2
ij,t

}T

t=1

}
i ̸=j

. It is helpful to rewrite the model:



true zeros :

spurious zeros :

prior :

likelihood :

Pij,t ∼ Bern (pij)

B1
ij,t, B

2
ij,t ∼ Bern (bij)

Fij,t ∼ Pij,t · δ0 + (1− Pij,t) · eµij,t · eηij,t

µij,t = βt log distij + αorig
i,t + αdest

j,t

ηij,t ∼ N
(
0, s2ij

)
F̃ 1
ij,t|Fij,t ∼ δ0 · I {Fij,t = 0}

+
[
B1

ij,t · δ0 +
(
1−B1

ij,t

)
· Fij,t · eε

1
ij,t

]
· I {Fij,t > 0}

F̃ 2
ij,t|Fij,t ∼ δ0 · I {Fij,t = 0}

+
[
B2

ij,t · δ0 +
(
1−B2

ij,t

)
· Fij,t · eε

2
ij,t

]
· I {Fij,t > 0}

ε1ij,t, ε
2
ij,t ∼ N

(
0, ς2ij

)

.

G.2 Bernoulli Parameters

For a given bilateral trade flow from i to j in period t, we can compute the ex-ante probability

of observing a certain number of zeros:

Pr {two observed zeros} = pij + (1− pij) · b2ij

Pr {one observed zero} = 2 · (1− pij) · (1− bij) · bij

Pr {no observed zeros} = (1− pij) · (1− bij)
2 .
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We can use the time variation to identify the probabilities on the left-hand side:

z̃ij,2 =
1

T

T∑
t=1

I
{
F̃ 1
ij,t = 0, F̃ 2

ij,t = 0
}

z̃ij,1 =
1

T

T∑
t=1

I
{
F̃ 1
ij,t = 0, F̃ 2

ij,t > 0 or F̃ 1
ij,t > 0, F̃ 2

ij,t = 0
}

z̃ij,0 =
1

T

T∑
t=1

I
{
F̃ 1
ij,t > 0, F̃ 2

ij,t > 0
}
.

When z̃ij,2, z̃ij,1, z̃ij,0 ∈ (0, 1), we can back out the estimated probability of a true zero p̃ij

and the estimated probability of a spurious zero b̃ij by solving

z̃ij,2 = p̃ij + (1− p̃ij) · b̃2ij

z̃ij,1 = 2 · (1− p̃ij) ·
(
1− b̃ij

)
· b̃ij

z̃ij,0 = (1− p̃ij) ·
(
1− b̃ij

)2
.

The solutions are

p̃ij = max

{
1− (z̃ij,1 + 2z̃ij,0)

2

4z̃ij,0
, 0

}
, b̃ij =

z̃ij,1
z̃ij,1 + 2z̃ij,0

.

I separately consider the possible cases where the estimated probabilities (z̃ij,2, z̃ij,1, z̃ij,0) are

not all strictly between 0 and 1:

1. z̃ij,2 = 1, z̃ij,1 = 0, z̃ij,0 = 0: In this case we observe only zeros so I set the estimated

probability of a true zero p̃ij to 1, which makes the estimated probability of a spurious

zero b̃ij irrelevant.

2. z̃ij,2 = 0, z̃ij,1 = 1, z̃ij,0 = 0: In this case one country always reports a positive flow and

the other reports a zero flow. In this case I set the estimated probability of a true zero

p̃ij to 0, and the estimated probability of a spurious zero b̃ij to 0.5.

3. z̃ij,2 = 0, z̃ij,1 = 0, z̃ij,0 = 1: In this case all reported flows are positive, so I set both
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the estimated probability of a true zero p̃ij and the estimated probability of a spurious

zero b̃ij to 0.

4. z̃ij,2 ∈ (0, 1) , z̃ij,1 ∈ (0, 1) , z̃ij,0 = 0: In this case there are no years with two reported

positive flows. In this case I set the estimated probability of a true zero p̃ij to z̃ij,2, and

the estimated probability of a spurious zero b̃ij to z̃ij,1.

5. z̃ij,2 ∈ (0, 1) , z̃ij,1 = 0, z̃ij,0 ∈ (0, 1): In this case some years have two zeros and other

years have two positive flows. In this case I set the estimated probability of a true zero

p̃ij to z̃ij,2, and the estimated probability of a spurious zero b̃ij to 0.

6. z̃ij,2 = 0, z̃ij,1 ∈ (0, 1) , z̃ij,0 ∈ (0, 1): In this case there are no reported double zeros

so I set the estimated probability of a true zero p̃ij to 0. I then solve the system of

equations:

z̃ij,1 = P̃ r {one observed zero|no spurious zeros, observed zeros < 2}

=
2b̃ij

(
1− b̃ij

)
2b̃ij

(
1− b̃ij

)
+
(
1− b̃ij

)2 =
2b̃ij

1 + b̃ij

z̃ij,0 = P̃ r {no observed zeros|no spurious zeros, observed zeros < 2}

=

(
1− b̃ij

)2
2b̃ij

(
1− b̃ij

)
+
(
1− b̃ij

)2 =
1− b̃ij

1 + b̃ij
,

and find

b̃ij =
z̃ij,1

2− z̃ij,1
.
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G.3 Measurement Error Variances

We can combine the model equations to find:

log F̃ 1
ij,t = βt log distij + αorig

i,t + αdest
j,t + ηij,t + ε1ij,t, F̃ 1

ij,t > 0

log F̃ 2
ij,t = βt log distij + αorig

i,t + αdest
j,t + ηij,t + ε2ij,t, F̃ 2

ij,t > 0,

for i, j = 1, ..., n and t = 1, ..., T . Subtracting these two equations yields

log F̃ 1
ij,t − log F̃ 2

ij,t = ε1ij,t − ε2ij,t ∼ N
(
0, 2ς2ij

)
, F̃ 1

ij,t > 0, F̃ 2
ij,t > 0,

for i, j = 1, ..., n and t = 1, ..., T . This suggests the estimator

ς̃2ij =
I
{∑T

t=1 I
{
F̃ 1
ij,t > 0, F̃ 2

ij,t > 0
}
> 0
}

∑T
t=1 I

{
F̃ 1
ij,t > 0, F̃ 2

ij,t > 0
} 1

2

T∑
t=1

I
{
F̃ 1
ij,t > 0, F̃ 2

ij,t > 0
}
·
(
log F̃ 1

ij,t − log F̃ 2
ij,t

)2

for i, j = 1, ..., n. So note that county-pairs with no entries with two positive flows will have

an estimated measurement error variance of 0. Note that the estimator is unbiased even with

access to one period of mirror trade data (assuming both flows are non-negative). Obtaining

estimators for the measurement error variances is what Walters (2024) calls the estimation

step.

G.4 Prior Means

For the calibration of
(
{βt} ,

{
αexp
i,t

}
,
{
αimp
j,t

})
, I use F̃ij,t = F̃ 1

ij,t. We then know that

log F̃ij,t ∼ N
(
βt log distij + αorig

i,t + αdest
j,t , s2ij + ς2ij

)
, for F̃ij,t > 0, (17)
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for i, j = 1, ..., n and t = 1, ..., T . Using maximum likelihood estimation, it follows that the

prior mean parameters can be estimated from the within-period regressions

log F̃ij,t = βt log distij + αorig
i,t + αdest

j,t + ζij,t, for F̃ij,t > 0, (18)

for t = 1, ..., T , with ζij,t an error term. The estimated prior means are

µ̃ij,t =
(
β̃t log distij + α̃orig

i,t + α̃dest
j,t

)
· I
{
F̃ij,t > 0

}
+

I
{∑T

s=1 I
{
F̃ij,s > 0

}
> 0
}

∑T
s=1 I

{
F̃ij,s > 0

} ·
T∑

s=1

{
β̃s log distij + α̃orig

i,s + α̃dest
j,s

}
,

for i, j = 1, ..., n and t = 1, ..., T . Note that for zero flows, the prior mean is imputed using

an across-period average, and µ̃ij,t is only zero if F̃ij,t is zero in all time periods for that

country pair.

G.5 Prior Variances

From Equation (17) it follows that the posterior variances can be estimated by

s̃2ij = max
{
Ṽar

(
log F̃ij,t − µ̃ij,t|F̃ij,t > 0

)
− ς̃2ij, 0

}
,

for i, j = 1, ..., n. Here, I again impute across periods for zero flows. Obtaining estimators

for the prior means and variances is what Walters (2024) calls the deconvolution step.

G.6 Shrinking Variance Estimates

To leverage country information and the fact that importers and exporters can differ in their

reliability, and reduce the variability for
{
ς̃2ij
}
and

{
s̃2ij
}
, I fit the models

ς̃2ij = eκ
ς,orig
i +κς,dest

j +uς
ij and s̃2ij = eκ

s,orig
i +κs,dest

j +us
ij , (19)
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for i, j = 1, ..., n, with κς,orig
i , κς,dest

j , κs,orig
i and κs,dest

j country-origin and country-destination

fixed effects and uς
ij and us

ij error terms. Then, rather than using ς̃2ij and s̃2ij I will use the

fitted values ς̊2ij = eκ̃
ς,orig
i +κ̃ς,dest

j and s̊2ij = eκ̃
s,orig
i +κ̃s,dest

j .

G.7 Posterior Draws

It follows that the estimated posterior distribution for the true flow between location i and

j, Fij,t, given its noisy version, F̃ij,t is given by

Fij,t|F̃ij,t, ϑ̃ ∼


Qij · δ0 + (1−Qij) · eN(µ̃ij,t ,̊s

2
ij)

exp

{
N
(

s̊2ij
s̊2ij+ς̊2ij

log F̃ij,t +
ς̊2ij

s̊2ij+ς̊2ij
µ̃ij,t,

(
1
s̊2ij

+ 1
ς̊2ij

)−1
)} F̃ij = 0

F̃ij > 0

, (20)

for i, j = 1, ..., n and t = 1, ..., T , where Qij ∼ Bern
(

p̃ij

p̃ij+b̃ij(1−p̃ij)

)
.

G.8 Diagnostics

From Equation (17), one can verify how reasonable the normality assumption on the prior

and measurement error model is by comparing the histogram of the normalized residuals

 log F̃ij,t − µ̃ij,t√
s̊2ij + ς̊2ij


i,j,t, F̃ij,t>0

with the probability density function of a standard normal distribution. To further check

the reasonableness of the gravity prior, we can look at the adjusted R-squared of the gravity

regressions in Equation (18), and, following Allen and Arkolakis (2018), plot the log flows

against the log distance, after partitioning out the origin and destination fixed effects.
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G.9 Computational Implementation Details

In the case where for all years one country reports only positive flows and the other country

reports only NAs, I replace the NAs by the positive flows. After this initial replacement

step, I replace the remaining NAs by zeros.

H Details for Armington Model

H.1 Derivation of System of Equations for {Y prop
i }

Rearranging Equation (10) and recalling that λij = Fij/Ej yields:

λij =
(τijYi)

−ε χij∑
k (τkjYk)

−ε χkj

, i, j = 1, ..., n. (21)

Next, plugging in Equations (11) and (21) into Equation (10) yields

Fij = λij (1 + κj)Yj, i, j = 1, ..., n.

If we sum over j, we can use Yi =
∑n

ℓ=1 Fiℓ to find

Yi =
n∑

j=1

λij (1 + κj)Yj, i = 1, ..., n. (22)

In the counterfactual equilibrium, Equation (22) should still hold. Because κi is constant

across equilibria for all i, this results in:

Y cf,prop
i Yi =

n∑
j=1

λcf,prop
ij λij (1 + κj)Y

cf,prop
j Yj, i = 1, ..., n. (23)
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Similarly, Equation (21) should still hold in equilibrium. Using that χij is constant across

equilibria for all i, j, we find

λcf,prop
ij =

1

λij

(
τ cf,propij τijY

cf,prop
i Yi

)−ε

χij∑
k

(
τ cf,propkj τkjY

cf,prop
k Yk

)−ε

χkj

=
1

λij

(
τ cf,propij Y cf,prop

i

)−ε (τijYi)
−ε

χij∑
ℓ(τℓjYℓ)

−ε
χℓj∑

k

(
τ cf,propkj Y cf,prop

k

)−ε (τkjYk)
−ε

χkj∑
ℓ(τℓjYℓ)

−ε
χℓj

=

(
τ cf,propij Y cf,prop

i

)−ε

∑
k λkj

(
τ cf,propkj Y cf,prop

k

)−ε , i, j = 1, ..., n. (24)

Finally, combining Equations (23) and (24) yields the desired expression

Y cf,prop
i Yi =

∑
j

(
τ cf,propij Y cf,prop

i

)−ε

∑
k λkj

(
τ cf,propkj Y cf,prop

k

)−ελij (1 + κj)Y
cf,prop
j Yj, i = 1, ..., n.

H.2 Results for Other Countries

Figure 8 reproduces Figure 1 for all 76 countries in the sample.

H.3 Calibration Procedure and Computational Details

The default approach from Section 4 can be applied. For the empirical Bayes step, the cali-

bration of ϑ, we can use the mirror trade data setting from Section 4.2.2. To construct {Fij},

I use the mirror trade data for bilateral flows {Fij}i ̸=j and the trade flow data from Waugh

(2010) for own-country flows {Fii}. Because the mirror trade data report zero bilateral trade

flows for Belgium, I exclude it from the analysis, resulting in a sample of 76 countries.

I Appendix Figures
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Figure 3: Uncertainty quantification for winsorized heteroskedastic normal shocks to
{logFij,t} for the change in China’s welfare due to the China shock. The solid blue line
is the estimate as reported in Adao, Costinot, and Donaldson (2017), the dotted light-blue
lines denote the intervals accounting for estimation error as reported in Adao, Costinot, and
Donaldson (2017), and the dashed red lines denote the intervals based on the estimated

posterior distributions πpost
(
gt ({Fij,t} , ε) |

{
F̃ij,t

}
; ϑ̃
)
for t = 1, ..., T .
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Figure 4: Plot to compare the normalized residuals with the probability density function of
a standardized normal distribution to check whether the normality assumption for the prior
is reasonable for Adao, Costinot, and Donaldson (2017).

Figure 5: Plot that follows Allen and Arkolakis (2018) to check whether the gravity model
is reasonable for log trade flows in 2011 from Adao, Costinot, and Donaldson (2017).
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Figure 6: Plot to compare the normalized residuals with the probability density function of
a standardized normal distribution to check whether the normality assumption for the prior
is reasonable for Allen and Arkolakis (2022).

Figure 7: Plot that follows Allen and Arkolakis (2018) to check whether the gravity model
is reasonable for log traffic flows from Allen and Arkolakis (2022).
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