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Abstract

Counterfactuals in quantitative trade and spatial models are functions of the current
state of the world and the model parameters. Common practice treats the current state
of the world as perfectly observed, but there is good reason to believe that it is measured
with error. This paper provides tools for quantifying uncertainty about counterfactuals
when the current state of the world is measured with error. I recommend an empirical
Bayes approach to uncertainty quantification, and show that it is both practical and
theoretically justified. I apply the proposed method to the settings in |Adao, Costinot,
and Donaldson! (2017)) and |Allen and Arkolakis (2022) and find non-trivial uncertainty

about counterfactuals.

1 Introduction

Economists use quantitative trade and spatial models to evaluate counterfactual scenarios.

For instance, how do expenditure patterns across countries adjust in response to the im-
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plementation of a trade agreement? How are welfare levels affected when transportation
infrastructure connecting regions is improved? These counterfactual questions are typically
posed relative to an observed factual situation. This implies that the estimand of inter-
est depends directly on the realized data, rather than on the underlying data-generating
distribution—a departure from standard statistical settings.

The setting with data-dependent counterfactual estimands is further complicated by the
fact that data in quantitative trade and spatial models are often measured with error (Goes,
2023; Linsi, Burgoon, and Miigge|, 2023} Teti, 2023). Unlike classical measurement error
settings, where the estimand is typically a parameter of the correctly measured population
distribution, here it is a functional of the realized data. To illustrate, consider the canonical
Armington model (Armington| [1969)), where predicted welfare changes from hypothetical
trade cost shocks can be written as a function of baseline bilateral trade flows and the trade
elasticity (Arkolakis, Costinot, and Rodriguez-Clare, 2012). The question I address is how
measurement error in the observed trade flows affects uncertainty in the welfare predictions.

I develop an empirical Bayes framework for quantifying uncertainty around counterfactual
predictions. The approach requires specifying both a measurement error model and a prior
distribution over the latent true data, up to a set of hyperparameters. These hyperparameters
are estimated from the observed data via an empirical Bayes step. Bayes’ rule then yields an
estimated posterior distribution over the latent data given the noisy observations. Given the
structure of quantitative trade and spatial models, this posterior induces a corresponding
posterior over counterfactual predictions. Uncertainty can then be summarized by reporting
posterior quantiles.

In settings where the observed data consist of non-negative dyadic flows, I propose a de-
fault specification for the measurement error model and prior that can be calibrated directly
from the data, yielding a widely applicable empirical Bayes approach. Specifically, I model
measurement error as log-normal and use a log-normal prior centered on a structural gravity

equation, with a point mass at zero to accommodate zero flows. This setup is designed



for ease of implementation and is suitable for a wide class of quantitative trade and spatial
models.

I consider two approaches to calibrating the hyperparameters in this default specification.
The first assumes constant measurement error variances across flows and relies on researcher
input or domain knowledge. The second, applicable in the case of international trade, uses the
mirror trade dataset compiled by |Linsi, Burgoon, and Miigge (2023)), which reports bilateral
trade flows as recorded by both exporters and importers. I interpret these paired observations
as two independent noisy measurements of the true trade flow, enabling calibration of flow-
specific measurement error variances.

To illustrate the impact of incorporating measurement error into counterfactual analysis,
[ revisit the applications in |Adao, Costinot, and Donaldson| (2017) and |Allen and Arkolakis
(2022). In |Adao, Costinot, and Donaldson (2017), which quantify the welfare effects of
China’s accession to the WTO, I model measurement error in baseline bilateral trade flows.
I apply the default empirical Bayes approach and construct uncertainty intervals that account
for measurement error in the estimated changes in China’s welfare from 1996 to 2011. These
intervals are substantially wider than those reported in |Adao, Costinot, and Donaldson
(2017), which reflect estimation uncertainty.

In the setting of |Allen and Arkolakis (2022), the counterfactual question concerns which
highway links in the United States yield the highest return on investment and are therefore
most promising for improvement. I model measurement error in traffic flows and apply the
default empirical Bayes approach, calibrating the prior and measurement error model using
estimates from Musunuru and Porter (2019). I compute uncertainty intervals that account
for measurement error for the three links with the highest estimated returns. Although the
intervals are wide, the relative ranking of the top three links remains robust.

This paper contributes to a growing body of work aimed at improving counterfactual anal-
ysis in quantitative trade and spatial models (Balistreri and Hillberry}, |2008; |Adao, Costinot,
and Donaldson, [2017; [Kehoe, Pujolas, and Rossbach|, 2017; |/Adao, Costinot, and Donaldson),



2023; |Ansari, Donaldson, and Wiles, [2024} Sanders|, 2025)). The most closely related work is
Dingel and Tintelnot| (2025]), which studies calibration procedures in granular environments.
That paper considers models that presume a continuum of agents and shows that, when
data are limited, unit-level idiosyncrasies are absorbed into the model, leading to overfitting
and poor out-of-sample performance. My focus is on the complementary issue of uncer-
tainty quantification due to measurement error—an issue that persists even in non-granular
settings. |Dingel and Tintelnot| (2025 recommends replacing raw observed data with fitted
values from a low-dimensional model. T show how this recommendation can be nested into
the proposed Bayesian framework.

The remainder of the paper is organized as follows. Section [2] introduces the setting and
notation. Section |3| presents the empirical Bayes framework for accounting for measurement
error in quantitative trade and spatial models. Section [ describes a widely applicable
default approach. Section [5| demonstrates the procedure in the context of the Armington
model. Section [0 applies the method to the trade setting in /Adao, Costinot, and Donaldson
(2017) and explores its use in the economic geography framework of |Allen and Arkolakis

(2022). Section [7] concludes.

2 Counterfactuals in Quantitative Trade and Spatial Models

This section introduces the notation and discusses the key assumption that commonly un-

derlies counterfactual analyses in quantitative trade and spatial models.

2.1 Notation and Key Assumption

To begin, consider a baseline setting where there is no measurement error. Let D € D C R4P
denote a data vector drawn from distribution Pp, and let § € © C R% denote a structural
parameter. Our objective is to compute a scalar counterfactual quantity v € R. The key

assumption that the counterfactual object of interest has to satisfy is:



Assumption 1. For a given counterfactual question and fixed parameter value 8, the coun-

terfactual object v can be expressed as a function of the realized data D:

v=9(D,0), (1)

for some known function g: D x © — R.

The exact functional form of g depends on the specific quantitative model that is con-
sidered. In Appendix [A] T discuss Assumption [I] for two leading classes of models, namely
invertible models and exact hat algebra models.

The main appeal of focusing on objects of the form in Assumption [I] is that it allows
researchers to answer counterfactual questions posed relative to a specific, observed factual
situation. In quantitative trade and spatial settings, such questions are often more at least
as relevant as those concerning average effects. For example, in a quantitative model of
international trade, the goal is typically to understand what would happen to the world
following a specific policy change, rather than what would occur in a randomly drawn year
under that pohcyH

Assumption [I] implies that if the data D are observed without error and the structural
parameter 6 is known, we can perfectly recover ’y.E| This contrasts with standard econometric
models, where the object of interest is a function of the correctly measured distribution of
the data, rather than the actual observations. So the key distinction with standard settings
is:

standard setting : v =g(Pp,0) (2)
2

this paper : v=g(D,8), D~Pp

Importantly, this difference implies that it would not suffice to be able to perfectly estimate

! Additionally, for exact hat algebra models, which are discussed in Appendix|Al the focus on counterfac-
tuals as in Assumption[I]enables researchers to address counterfactual questions without requiring knowledge
of quantities that are difficult to observe or estimate—such as the level of trade costs.

2Indeed, by fixing g I abstract away from model misspecification, an important problem I engage with in
future work.



the distribution Pp. Towards uncertainty quantification, we hence need to account for

uncertainty about the realized data themselves rather than their distribution.

3 Empirical Bayes Uncertainty Quantification

This section introduces measurement error into quantitative trade and spatial models. It

outlines how to quantify the resulting uncertainty for the counterfactual prediction of interest.

3.1 Prior and Measurement Error Model

Under Assumption [I} our object of interest can be written as a function solely of the data
realizations and the structural parameter, which is convenient for answering relevant coun-
terfactual questions. However, the data realizations are economic variables which are often
measured with error. For instance, Ortiz-Ospina and Beltekian| (2018)) and (Goes| (2023))
highlight that there are large discrepancies between and within various data sources from
trade and international economics. Motivated by this, I assume that, instead of the true
data vector D, we observe a noisy version D.

For uncertainty quantification for the counterfactual prediction, we will require the pos-
terior distribution of the true data given the noisy data. Towards that end, I introduce a

model for the measurement error and a prior distribution for the true underlying data,

prior : 7Per (D: 1))

measurement error : e <D|D; 19)

Here, ¥ € R% is a vector of unknown hyperparameters.



3.2 Empirical Bayes and Posterior Distribution

Given such a prior distribution and a measurement error model, we can use an empirical

Bayes approach to estimate the unknown hyperparameters.ﬂ Formally, we have

U = arg max/ﬂme (D\D; 19) 7P (D;9) dD.
9

Then, given the estimated hyperparameters 5‘, we can use Bayes’ rule to find the estimated

posterior distribution of the true data given the noisy data,

o (D10;3) momer ;)

mPost <D|D; 1§> (3)

[ e ([)|D; 15) grprior (D; 15) dD
Using this estimated posterior, we can generate draws for the true data given the noisy dataﬁ
The Bayesian approach allows researchers to incorporate economic knowledge through

the prior. For example when considering measurement error in non-negative flows between

locations, one can fit a prior centered on a gravity model, which I will do in Section [4]

3.3 Quantifying Uncertainty about ~

The object of interest is a function of the true data and the structural parameter. Going
forward, I will assume the structural parameter is known, an assumption I will discuss in
more detail in Section [3.5] Then, under Assumption (1] it follows that we can obtain the
estimated posterior for the counterfactual object of interest, wPost <v|f); 5)

Towards uncertainty quantification, we want to sample from this posterior and report the

3Rather than estimating the parameters of the prior distribution for the true underlying data, which
corresponds to an empirical Bayes approach, one could alternatively specify prior distributions for these
parameters, which corresponds to a hierarchical Bayes approach.

4Note that the measurement error distribution does not have to be mean zero, so also allows for measure-
ment error bias. Nevertheless, even mean zero measurement error can result in bias in the counterfactual
prediction of interest. This is automatically taken into account by the Bayesian approach when quantifying
uncertainty. Furthermore, the individual measurement error distributions can be arbitrarily correlated in
this general setup.



relevant quantiles]’] The entire procedure is summarized in Algorithm [1]

Algorithm 1 Uncertainty quantification about v = g (D, 0)

1. Input: prior 7P"°" (D;4J), measurement error model 7™° (D|D; 19), noisy data D, num-

ber of bootstrap draws B, coverage level 1 —« (choose B and « such that «/2- B € N).

2. Empirical Bayes estimation step: ¥ = arg max [ 7™ (D|D; 19) 7P (D 9) dD.
9

3. Construct estimated posterior: wPost (D\[?; @) oc e ([D\D; 1§> rprior <D; 1§>
4 Forb=1,.. B,

(a) Draw D, ~ 7Post (D\D; 5)

(b) Compute v, = g (Dy, 0) .
5. Sort {3}, to obtain {y(b)}szl with /() <~ < < ~B),

6. Report [,y(a/Z-B)’,y((lfa/Z).B)] )

A natural accompanying point estimator for the procedure in Algorithm [I}is the posterior
median, which is always guaranteed to be contained in the reported interval. By contrast,
the standard point estimator g (D, 9), which does not account for measurement error, may
lay outside the interval. The posterior median corresponds to an optimal estimate under the
estimated posterior and under absolute value loss from a decision-theoretic perspective (see
for example Proposition 2.5.5 in [Robert}, 2007)).

The posterior median answers the question: what does a Bayesian believe the counter-
factual prediction would have been in the absence of measurement error? While this is a
natural and intuitive question to ask, the answer necessarily depends on the prior. But
when the prior reflects well-established economic relationships—such as gravity patterns in
quantitative trade and spatial models—the posterior median provides a principled estimate

of the counterfactual prediction.

5Note that counterfactual predictions are typically derived as functions of the full system of counterfactual
equilibrium variables. Thus, whether the researcher is ultimately interested in a scalar outcome, a relative
comparison, or a global average, the mechanics of uncertainty quantification—drawing from the posterior
over the true data and solving for equilibrium—remain the same.



3.4 Relation to the Literature
3.4.1 Relation to Measurement Error Literature

The literature on measurement error in nonlinear models is extensive, as reviewed in Hu
(2015) and |Schennach| (2016)), and the most closely related strand of measurement error
literature is that on nonseparable error models (Matzkin, 2003; |Chesher|, | 2003; Hoderlein and
Mammen), 2007; Matzkin, 2008; Hu and Schennach) 2008} Schennach, White, and Chalak]
2012; Song, Schennach, and Whitel 2015)). However, these results do not apply to my setting.

The key distinguishing feature of the setting in this paper is that the object of interest
~ directly depends on the correctly measured data, because the equality in Assumption
is an exact statement. This is convenient for answering counterfactual questions, and arises
because counterfactual questions are typically posed relative to an observed factual situation.
In contrast, in standard econometric methods of measurement error, the object of interest
is a function of the correctly measured distribution of the data, Pp, rather than the actual
realized observations, D. This leads to the key distinction in Equation ({2)).

This difference is important because in my setting, it would not suffice to be able to
perfectly estimate the distribution Pp. For example in a quantitative model of international
trade, to answer counterfactual questions we need the realized trade flows, rather than the
trade flow distribution from which they are drawn. In contrast, in standard econometric
models of measurement error, knowing this distribution would suffice, because the estimands
are functionals of the correctly measured distribution of the data. By virtue of that, we need

to account for uncertainty about the observations themselves rather than their distribution.

3.4.2 Relation to Dingel and Tintelnot (2025)

The most relevant paper in the literature on improving counterfactual calculations in quanti-
tative trade and spatial economics is |Dingel and Tintelnot| (2025), which studies calibration

procedures in granular settings. In these settings, individual idiosyncrasies do not wash out



and can cause overfitting and poor performance out-of-sample. To deal with this, |Dingel and
Tintelnot| (2025)) proposes to, instead of the observed data, either use fitted values obtained
using a low-dimensional model or smooth the data using matrix approximation techniques.
Both of these approaches can be cast as special cases of the proposed procedure in Algorithm
[1, by choosing a specific prior.

Specifically, the main recommendation is to use a low-dimensional model and is called
the covariates-based approach. Dingel and Tintelnot| (2025) considers a quantitative spatial
model with a measure of L individuals. Let ¢;; denote the measure of people residing in
location ¢ and working in location j. The covariates-based approach then interprets the

observed migration shares {%} as a finite sample from a continuum model. This results in

the maximum likelihood model
{e}j} 9 ~ Multinomial ({hi; (9)}, L), (4)

for ¥ a set of hyperparameters and h;; () a model function which I discuss further in Ap-
pendix [B]

The covariates-based approach in Dingel and Tintelnot| (2025) first finds a maximum
likelihood estimator ¥ for ¥ using the model in Equation . Next, focusing on a specific
counterfactual object of interest denoted by v = g ({%} ;9) for some known structural pa-

rameter # and function g, the approach recommends using the fitted values {hij (@) } instead

of the observed shares {%} to compute counterfactuals. That is, the main recommendation

is to use the estimate

instead of ¢ ({%} ;9).

To see how the covariates-based approach from Dingel and Tintelnot| (2025) is nested in

10



my Bayesian framework, consider the following prior and measurement error model,

prior : %Qﬁ“’éhij(ﬁ)a i,j=1,..,n
_ ) (5)
measurement error : {&j} ;1) ~ Multinomial ({%} , L)

where 0y,;(9) denotes the Dirac mass at h;; (), implying a degenerate prior. The empirical

Bayes step then combines the prior and measurement error model to find
{1‘;‘} ;¥ ~ Multinomial ({h;; (9)}, L),

which overlaps with the model in Equation (4)), and uses maximum likelihood estimation to

estimate v by 9. This yields the estimated prior and measurement error model

. I ..
prior : Tj;ﬁwéh“@), ,7=1,..n

measurement error : {17,]} . ~ Multinomial ({%} ,L)

Using Bayes’ rule we can then find the estimated posterior for the true migration shares,
Cij (5.5 o
f|{£w},’l9’\45h”(1§), 2,]21,...,71. (6)

Note that after the empirical Bayes estimation step, since the estimated prior is degenerate,
no information is taken from the estimated measurement error model.
The estimated posterior distributions in Equation @ translate to an estimated posterior

for 7,
oot (’Y| {&j} 379) = Og({ns(9) }:0)°

Indeed, this posterior is a point mass at the counterfactual prediction that uses the fitted
values {hij <1§>} as inputs. It follows that the covariates-based approach is a special case

of Algorithm (1| by choosing the prior and measurement error model as in Equation ([5)).

11



Note that if we follow Algorithm [I] exactly, then in step 4a—where we draw from the
posterior distributions in Equation @—We will obtain the same values in each bootstrap
iteration. As a result, the interval constructed in step 6 will collapse to a single point. This
outcome is expected, as the procedure of |Dingel and Tintelnot| (2025) is only concerned with
point estimation and does not engage with uncertainty quantification.

The second recommendation in Dingel and Tintelnot| (2025)) is to replace the observed

data with a smoothed version using matrix approximation techniques. I discuss this approach

in Appendix [B]

3.5 Estimation Error

The counterfactual prediction of interest will typically depend on a structural parameter 6.
It is common in applied work to plug in a fixed value for the structural parameter taken from
the literature or obtained through data-driven methods, thus ignoring the uncertainty asso-
ciated with the estimation process. An exception is |Adao, Costinot, and Donaldson| (2017)),
which reports confidence sets for the counterfactual predictions of interest that account for
estimation error.

Towards accounting for estimation error for quantitative trade and spatial models in
the presence of measurement error, let 6 denote the estimator of the estimand 6. This
estimand is usually a function of the distribution of the data Pp. This implies that, to
address measurement error affecting the structural parameter, one can apply the frequentist
measurement error techniques discussed in Section to find a bias-corrected estimate,
though the resulting correction will not admit a Bayesian interpretation.

Alternatively, in Appendix [C] I outline a fully Bayesian approach that also considers
estimation error. Specifically, I assume that the posterior distribution of the structural
parameter 6 given the true data D is approximately normal, which is justified under regularity

conditions that are closely related to those required for frequentist asymptotic normality. We

12



then have two different posteriors,

estimation error posterior : mPostee (91 D)

measurement error posterior : rPost:me <D|D; 19)

As in Section [3.3] a natural point estimator for the structural parameter is the median of

the estimated posterior given the noisy data,

Post <9|f); 1§> = /7rp05t’ee (0| D) mPost-me <D|l~); 15) apD.

Using Assumption , we can also find the posterior 7P°"¢ (v| D), and it follows that a natural

point estimator for the counterfactual prediction is the median of the estimated posterior
qrPost <’7|D; 05) — /ﬂ.post,ee ('7|D) qpost.me <D|D, &) dD.

In Appendixl describe how to sample from the posteriors P (9|D; 19) and Post (7|f); 5‘) .
There, I also outline how to quantify uncertainty while jointly accounting for estimation error
and measurement error in a natural way.

It is important to understand that Bayesian estimators such as the medians of 7Pt <9[l~7; 19)
and 7Post (’y|l~); 15) need not satisfy frequentist properties such as consistency, even when the
prior is well-specified. I elaborate on this possibility in Appendix [C] by showing frequentist
inconsistency of a structural estimator in a stylized example.

However, for models satisfying Assumption [I} I am not aware of a frequentist framework
that integrates both estimation error and measurement error within a unified procedure
that permits both point estimation and uncertainty quantification. By contrast, the pro-
posed Bayesian approach accommodates both sources of uncertainty within a single coherent
framework. Moreover, this approach nests the case where only measurement error is present:

as estimation error vanishes, the procedure naturally reduces to the framework that solely

13



accounts for measurement error. I therefore recommend the Bayesian approach when both
sources of uncertainty matter, and either the Bayesian or frequentist approach when only

estimation error is of concern.

4 Widely Applicable Default Approach

This section proposes a default empirical Bayes approach that can be applied in many set-
tings, as it is both economically reasonable for many quantitative trade and spatial models

and computationally convenient. It also discusses the toolkit that accompanies the paper.

4.1 Default Prior and Measurement Error Model

Often it will be clear what a sensible prior and measurement error model are, for example
a Dirichlet prior when observing migration shares. For when this is not the case, in this
section I provide a widely applicable default approach for quantifying uncertainty about the
counterfactual prediction of interest. This default approach can be applied out-of-the-box to
many quantitative trade and spatial models, but can also easily be adapted to other settings.
It recommends default choices for the prior distribution and measurement error model, and
discusses how to calibrate both based on observed data.

Concretely, consider the setting where we can write v = g ({F};},6), for {F;;} a set of
non-negative flows between locations. This setup is commonplace in quantitative trade and
spatial models (Costinot and Rodriguez-Clare, 2014; Redding and Rossi-Hansberg, 2017}
Proost and Thisse, [2019). I assume that both the prior distributions on the true flows and
the measurement errors are mixtures of a point mass at zero and a log-normal distribution,
a so-called spike-and-slab distribution (Mitchell and Beauchamp, |1988). The point mass at
zero is necessary because in both trade and spatial applications bilateral flows of zeros are
common, particularly when considering more granular data (Helpman, Melitz, and Rubin-

stein, |2008; |Dingel and Tintelnot, |2025). This prior and measurement error model imply that

14



the posterior distribution of the true flows given the noisy flows will also be a spike-and-slab
distribution. This mixture model is fairly flexible and the conjugacy is needed for compu-
tational speed. Furthermore, I assume that the prior mean exhibits a gravity relationship,
for which there is strong empirical evidence (Head and Mayer, 2014; Allen and Arkolakis,

2018)H This is summarized in the following assumption:

Assumption 2. We have

Fij ~ Bern (pj;)
true zeros :
Bij ~ Bern (b”>
spurious zeros : ,
Fij ~ Py - 8o+ (1 — Py) - V(%)
prior : . )
pi; = Blogdisty; + o™ + o

Fyj|Fyj ~ 6o - 1{F;; = 0}
likelihood :

+ Bij . 50 + (1 — Bl]) . GN(IOgFij’C’?j) . H{EJ > 0}

fori,j =1,...,n, where §y denotes the Dirac mass at zero, dist;; denotes the distance between

orig

locations © and j, «; dest

is an origin fived effect and o5 is a destination fized effect.

The probability that a bilateral trade flow is truly zero is denoted by p;;, and a true
zero flow is assumed to always result in an observed zeroﬂ The probability of a spurious
zero—that is, an observed zero despite a non-zero underlying true flow—is denoted by b;;.
The prior means and variances are denoted by {;; } and {s?j }, respectively. The flow-specific
measurement error variances are denoted by {gfj}

Gather the hyperparameters in 9 = <{pij} Abijt, B, {a?rig} {agdest) {S?j} , {g‘fj}) It

follows that the posterior distribution for the true flow between location ¢ and j, F;;, given

50ne can easily enrich this gravity prior by adding other “distance” variables such as differences in income
or productivity, or by adding dummies that indicate similarity such as contiguity or a common language, see
for example |Silva and Tenreyro| (2006]). I experimented with this but the results do not change much.

7 Assumption [2 implies that both true and spurious zeros occur randomly. Alternatively, one could think
about incorporating endogenous zeros using selection mechanisms such as inHelpman, Melitz, and Rubinstein
(2008)).
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its noisy version, Fj; is given by

Qij - 0o+ (1 — Qi) - eV (ih) Fi;=0

Fyj|Fij; 0 ~

2

53 - St 1 1\ 7! ~
exXp {N (—sfjﬁcfj log Py + i (3 + ) )} Fiy >0

ij

for i,j =1,...,n, where @);; ~ Bern (Im)
Conditional on being able to calibrate the parameters Y—the empirical Bayes estimation
step—one can quantify uncertainty about ~ by finding the interval as described in Algorithm

[} Then, a default procedure for quantifying uncertainty about v is summarized in Algorithm

2l

Algorithm 2 Uncertainty quantification about v = g ({F;},6)

1. Input: noisy flows {sz}, number of bootstrap draws B, coverage level 1 — « (choose
B and « such that a/2- B € N).

2. Empirical Bayes estimation step: calibrate ) as outlined in Section and denote the
estimator by .

3. Forb=1,....B,

(a) For 74,7 = 1,..,n, draw F;;, from the estimated posterior distribution
rpost <Fij|]5ij; z§> as in Equation (7).

(b) Compute 5, = g ({Fya)7,_, .6).
4. Sort {v}7, to obtain {fy(b)}le with 7y < ~2) < .. < AB),

5. Report [y(@/2B) A((1=e/2-B)]

Remark 1. One can verify how reasonable the normality assumption on the prior and mea-

surement error model is by comparing the histogram of the normalized residuals
log Fyj — {B log dist;; + & + o??e“}
2 =
\/ Sii TS5
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with the probability density function of a standard normal distribution. To further check
the reasonableness of the gravity prior, we can look at the adjusted R-squared of the gravity
model and, following|Allen and Arkolakis| (2018)), plot the log flows against the log distance for
positive flows, after partitioning out the origin and destination fixed effects. In Appendices

[D] and [E] T perform both these checks for my applications.

Remark 2. One might be worried about misspecification of the prior and measurement error
model. For the normal-normal model, we can use prior density-ratio classes to find worst-
case bounds on posterior quantiles over a neighborhood that contains distributions that are
not too far away from the assumed normal distribution for the prior and measurement error
model. It turns out that incorporating uncertainty around the prior and measurement error

model amounts to reporting slightly wider quantiles. The details can be found in Appendix

[El

4.2 Empirical Bayes Estimation Step: Calibrating ©/

The hyperparameters in ) need to be calibrated. In consider two cases.

4.2.1 Baseline Case with Domain Knowledge

In the baseline case I restrict the measurement error variances and prior variances to be
constant across flows so that gfj = ¢2 and sfj = 52 for all 4,5 = 1,...,n. Furthermore,

I require knowledge of the common measurement error variance ¢? and of the Bernoulli

parameters {p;;} and {bij} It then remains to estimate (ﬂ : {a(.’rig} {agdest) 32). Towards

)

this, we can combine the equations in Assumption [2| to find

log Ej ~ N <5 10g diStZ'j + a;)rig + a;lest’ 32 + §2> s Fij > 0.

8In the absence of a prior on the measurement error variance, one could adopt a sensitivity analysis
approach by varying the variance to determine the minimum level of measurement error that would overturn
the counterfactual conclusion.
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Using maximum likelihood estimation, it follows that the prior mean parameters can be

estimated from the regression

log Fij = ﬂ log diStij + Oé?rig + Oé}jeSt + Qbij, Ej > O,
with ¢;; an error term. It follows that the estimated prior means and variance are

fi;; = Blogdist;; + & + 6™, i, j=1,..n (8)

§2 — max {%‘ (10g Ej — /113|Eg > O) - §~2, 0} . (9)

Obtaining estimators for these prior means and variances is what Walters| (2024)) calls the

deconvolution step.

4.2.2 Mirror Trade Data

When the non-negative bilateral flows correspond to trade flows between countries, I use the
mirror trade dataset from |Linsi, Burgoon, and Miigge (2023)) to calibrate ©J. This dataset
has two estimates of each bilateral trade flow, both as reported by the exporter and as
by the importer. |Linsi, Burgoon, and Miigge (2023)) shows that there are so-called mirror
discrepancies in bilateral trade flows between almost all countries. This means that, for
instance, while the value that Germany reports it imported from France and the value
that France reports it exported to Germany should be the same, in practice they are often
different. I interpret this as observing two independent noisy observations per time period
for each bilateral trade flow. The key identifying assumptions are that the flow-specific
probabilities of true zeros, the flow-specific probabilities of spurious zeros, and the flow-
specific measurement error variances are constant over time.

The details for the calibration can be found in Appendix [G] I first calibrate the probabil-
ities of true zeros {p;;} and the probabilities of spurious zeros {b;;} by noting that for each

bilateral trade flow we can use the time variation to identify the probabilities of observing a
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certain number of zeros. I then leverage the model structure to calibrate the measurement
error variances {gfj} Lastly, I calibrate the prior parameters, which are period-specific
in this case, using a similar approach as for the baseline case with domain knowledge.
To leverage country information and the fact that importers and exporters can differ in
their reliability, I shrink the measurement error and prior variances using country-origin and

country-destination fixed effects.

4.3 Toolkit

Accompanying the paper, I provide an easy-to-use toolkit that consists of three programs/’|
The first program implements the high-level approach in Algorithm [I] It takes as inputs
<B .0, D, gpost <D|D; @) ,g) and outputs posterior draws {’yb}szl. The second program im-
plements the default approach in Algorithm . It takes as inputs (B,@, {Fw} .0, g) and
again outputs posterior draws {fyb}szl. The third program, which can serve as an input to
the second, uses the mirror trade dataset of Linsi, Burgoon, and Miigge (2023)) and allows
the researcher to choose countries and years for which they want to estimate the hyperpa-

rameters of the prior and measurement error model. This is summarized in Algorithm [3]

5 Illustrative Example: Armington Model

This section illustrates the proposed procedure using the Armington model (Armington),
1969), a canonical workhorse model in international trade, as outlined, for example, in

Costinot and Rodriguez-Clare| (2014).

9The toolkit is written in MATLAB and can be found on my website, https://sandersbas.github.io/. A
version in R is available upon request.
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Algorithm 3 Toolkit

1. Program 1: General algorithm.

e Input: number of draws B, structural parameter 8, data D, functions D — D,
(D, 0) — ~.

e Output: posterior draws {7,},_,.

2. Program 2: Default approach.

e Input: number of draws B, structural parameter 6, noisy flows {F’ij}, estimated
hyperparameters 9, function ({Fj;},0) ~ .

e Output: posterior draws {%}le, plot that compares histogram of the normalized

residuals with the probability density function of a standard normal distribution
as per Remark

3. Program 3: Mirror trade data calibration.

e Input: countries Z, years to produce bootstrap draws for 7, years to use for
calibration 7ealibration -

e Output: noisy flows {E-j}, estimated hyperparameters 9, adjusted R-squared of

the gravity model for the last year in 7T, plot of log flows against log distance for
positive flows, after partitioning out the origin and destination fixed effects as per
Remark [1

5.1 Model and Counterfactual Question of Interest

Countries are indexed by 4,5 = 1,...,n, and with CES preferences and perfect competition,

it follows that the relevant gravity equations and budget constraints are:

o (mY) Ty
L V) g

ij=1,..n (10)

Here, Fj; denotes the trade flow from country ¢ to j, and Y; = 2?21 Fy, E;, = Zzzl Fi; and
ki = (E; —Y;) /Y; denote country i’s total income, total expenditure and the ratio of the
trade deficit to income, respectively. Furthermore, 7;; denotes the iceberg trade cost between

country ¢ and j, which means that in order to sell one unit of a good in country j, country
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i must ship 7,; > 1 units, with 7; = 1. Lastly, ¢ > 0 is the trade elasticity and {x;;} are
idiosyncratic preferences.
Now, say we are interested in the counterfactual where we change the trade costs {7;;}

proportionally by {ch,prop}7 holding the trade elasticity e, the idiosyncratic preferences {x;; }

ij
and the trade imbalance variables {x;} constant. In Appendix [H.1]T show that we can then
solve for the corresponding proportional changes in income, {Y;Cf’pmp}, using

cf,pro cf,prop\ °

v

— N (L+ k) YIOPOPYS =1, m,

f 2 :
}/iC ,prop}/; —

- ) cf,prop~ ~cf,prop
i Dk Mk (Tk:j Y, >

where \;; = F;;/E; denotes the expenditure share that country j spends on goods from
country 7. By Walras’ Law, the proportional changes in income are only pinned down up to
a multiplicative constant. Subsequently, following |Costinot and Rodriguez-Clare| (2014]), we

can exactly solve for proportional changes in expenditure shares and welfare levels:

cf,prochf,prop ¢

Tij i

Z Ao ch,prochf,prop e’
EkG\ Tkj k

cf,pro cf,pro —1/e .
pyehprop (Aii’p p) =1,

cf,prop Cog
,\l.j = ,7=1,..,n

7

The income levels {Y;}, the expenditure shares {)\;;} and the trade deficit variables {x;} are

all functions of the trade flows {F};}, so the relevant counterfactual mapping is

cf ,prop cf,prop
{Fij}>{7ij }75'_>{Wi }

It follows that for a given counterfactual question as described by {ch,prop}’ we only require

ij
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knowledge of the baseline trade flows {Fj;} and the trade elasticity €. So we have:

D = {F;}

0 =ce.

The specific counterfactual question I consider is a 10% increase in all bilateral trade costs
between 76 countries, so that TZ-(;f’prOp =14+0.1-1T{i#j} fori,57 = 1,...,n. I focus on the
proportional changes in welfare in the Central African Republic, the Netherlands, Sweden

and the United States. It follows that, fixing {T?.f’pmp}, we have

v

Ve = 100 - (W;ﬂpmp - 1) = Jq ({Fw} €), (12)
for each ¢ € {CAF,NLD, SWE, USA}.

5.2 Measurement Error Model and Prior

For the Armington model, I will consider measurement error in trade flows {F;;}. Hence,
instead of the true trade flows we observe noisy trade flows {Ej}, which in turn lead to
noisy counterfactual predictions 7, for ¢ € {CAF,NLD, SWE, USA}.

If we specify a prior 7P ({ F}; } ; ¥) and a measurement error model 7™° ({Fw} [ {Fi;}; 79) ,
we can use empirical Bayes estimation and Bayes’ rule to find the estimated posterior
rpost ({Fw} | {FZ]} ,@) The default approach from Section [4| can be applied. For the em-

pirical Bayes step, the calibration of ¥}, we can use the mirror trade data setting from Section

4.2.20 So we can use the provided toolkit to obtain draws from 7P ({Fm} | {Fw} ,1?) I fix

the trade elasticity to € = 5, a typical value in the literature which is also used in |Costinot

and Rodriguez-Clare (2014]).
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5.3 Results

We can see the impact of measurement error in Table [I] and Figure[I] In Table[[]I compare
the standard point estimates based on noisy flows and the posterior median estimates, and
report the intervals obtained using Algorithm [2l In Figure [I] I plot the standard point
estimates and the smoothed estimated posterior distributions.

We observe that for the Central African Republic and the Netherlands there is a consid-
erable bias correction, causing the point estimate to lie outside the credible set. For Sweden
and the United States there is less of a bias correction. These plots illustrate that the pro-
posed approach automatically incorporates bias that is caused by measurement error, and
that this bias can be both negative and positive. In Appendix [H.2] I show the results for all

76 countries in the sample.

Point estimagte Median of Interval accounting for

g ({Fw} ,5> rPost <g ({F;;},5) ]| {Fw} 71§> measurement error
~CAF -1.09 20.26 [0.42, -0.14]
YNLD 515 6.57 7.10, -6.04]
YSWE 73.25 351 -3.79, -3.25|
Yusa 1.07 1.01 [1.27, -0.50]

Table 1: Uncertainty quantification for the Armington model. The counterfactual object of
interest is the change in welfare after a 10% increase in all bilateral trade costs. The intervals
based on measurement error report the 2.5th and 97.5th quantile of the estimated posterior

distribution 7P (g ({F},5) ]| {Fw} ,5)

6 Applications

In this section I discuss the applications in |Adao, Costinot, and Donaldson| (2017) and |Allen
and Arkolakis (2022)). In both cases, accounting for measurement error leads to substantial

uncertainty around the counterfactual predictions.

23



Central African Republic Netherlands
14r

¢ |=—Point estimate

Figure 1: Uncertainty quantification for the Armington model. The counterfactual object
of interest is the change in welfare after a 10% increase in all bilateral trade costs. The

solid blue line denotes the point estimate g <{Fm} ,5), and the dashed red line denotes the
smoothed estimated posterior distribution 7P°s* (g ({F},5) ]| {Ej} ,1§>

6.1 Application 1: /Adao, Costinot, and Donaldson (2017)
6.1.1 Model and Counterfactual Question of Interest

The empirical application of | Adao, Costinot, and Donaldson| (2017) investigates the effects of
China joining the WTO, the so-called China shock. Specifically, the authors examine what
would have happened to China’s welfare if China’s trade costs had stayed constant at their
1995 levels. They consider n countries and 7" time periods. The exercise I am considering is
assessing the sensitivity of counterfactual predictions to measurement error in bilateral trade
flows.

The counterfactual objects of interest is the change in China’s welfare, defined as the
percentage change in income that the representative agent in China would be indifferent

about accepting instead of the counterfactual change where China’s trade costs are fixed at
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their 1995 levels. The details of the model can be found in Appendix 'Yl The key insight
is that we can express the proportional change in China’s welfare in period ¢, denoted by
Wéﬁlﬁg’ﬁ, as a function of all the bilateral trade flows in different periods {F;;;} and the trade

elasticity . Hence, we can write

Wéfﬁf);;}; =g ({Fijﬂf} 76) ) (13)

Tn(n—1)

for t = 1,...,T and known functions g : R} X Ryy — R. Then, conditional on a

prior distribution for the true bilateral flows {F};;} and a measurement error model, we can

cf,prop

quantify uncertainty for {WChina’t}.

6.1.2 Measurement Error Model and Prior

The default approach from Section 4| can be applied. For the empirical Bayes step, the
calibration of ¥, we can use the mirror trade data setting from Section [4.2.2] Since there are
no zero flows in this application, the estimated posterior of interest is

~ §Z2] ~ 612 ~ 1 1 o
EijelFija ~ exp g N | o a8 <Fij’t> i 53+ < Han 2 3 ’

1) 1) ) ]
where {52}, {2}, {Fm} and {fi;;;} are all defined in Appendix .

6.1.3 Results

Having obtained a posterior distribution for the true trade flows given the noisy trade flows,
we can now quantify uncertainty about the counterfactual predictions of interest. In Figure
, [ reproduce Figure 3 of |Adao, Costinot, and Donaldson (2017)), which plots the percentage
change in China’s welfare as a result of the China shock for each year in the period 1996-2011,

and include two 95% intervals.

10Tn |Adao, Costinot, and Donaldson! (2017)), the authors consider two demand systems: standard CES and
“Mixed CES.” I focus on the standard CES specification.
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The first only considers estimation error and hence assumes the data are perfectly mea-
sured. It is constructed using code provided by the authors, and samples from the normal
distribution with mean and variance equal to the GMM estimator for the trade elasticity
¢ and its sampling variance, respectively. The resulting intervals are small for the period
before the year 2000, and then slowly become wider. These are the intervals reported in
Adao, Costinot, and Donaldson| (2017)).

The second region considers only measurement error and no estimation error in €. The
resulting intervals are considerably wider than the intervals based on estimation error, es-
pecially in the first few years. In Appendix [D.3] T perform additional analyses to check the

robustness of these results.

—Point estimate
Estimation error
— =Measurement error - S~

Change in welfare in China

i | | | | I
1996 1998 2000 2002 2004 2006 2008 2010

Figure 2: Uncertainty quantification for heteroskedastic normal shocks to {log Fj;.} for the
change in China’s welfare due to the China shock. The solid blue line is the estimate as
reported in |Adao, Costinot, and Donaldson| (2017)), the dotted light-blue lines denote the in-
tervals accounting for estimation error as reported in|Adao, Costinot, and Donaldson| (2017,
and the dashed red lines denote the intervals based on the estimated posterior distributions

post (gt ({Fia},e)] {F]t} ;5) fort=1,..,T.
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6.2 Application 2: |Allen and Arkolakis (2022)
6.2.1 Model and Counterfactual Question of Interest

The empirical application in Allen and Arkolakis (2022) aims to estimate the returns on
investment for all highway segments of the US Interstate Highway network. The authors do
so by introducing an economic geography model and calculating what happens to welfare
after a 1% improvement to all highway links. Combining these counterfactual welfare changes
with how many lane-miles must be added in order to achieve the 1% improvement, they find
the highway segments with the greatest return on investment.

This exercise only requires data on incomes and traffic flows of the n locations and
knowledge of four structural model parameters. The details of the model can be found in
Appendix [E.T], but the key relation is the one that maps the average annual daily traffic

(AADT) flows {F};} to the counterfactual return on investments {Rgfe}, which is
Riy = gre ({Fij} ,0)
for known functions g : Ri(n_l) xO —=>Rfork (=1,..n.

6.2.2 Measurement Error Model and Prior

For this application we can again apply the default approach from Sectiond] For the empirical
Bayes step we can use the baseline case from Section [£.2.1] There are no zeros so we only
have to provide an estimate of the measurement error variance ¢2. Musunuru and Porter
(2019) estimates that the measurement error variance of the logarithm of the average annual
daily traffic (AADT) flows, which is exactly the data that |Allen and Arkolakis| (2022)) uses,
is between 0.05 and 0.20. To obtain a lower bound on uncertainty, I will use a uniform
measurement error variance of 0.05.

With ¢? = 0.05, I use Equation (9 to find a prior variance of §* = 0.101. This results in

the following estimated posterior distribution for the true traffic flow between country ¢ and
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J, Fij, given its noisy version Fj;, for 7,5 =1, ..., n:
Fy|Fy; ~ exp {N <0.669 ‘log Fy; +0.331 - iy, 0.033) } ,
where fi;; is defined in Equation (g]).

6.2.3 Results

The counterfactual question of interest is which links have the highest return on investment,
and the authors of Allen and Arkolakis (2022) report the top ten links. For exposition, I will
focus my analysis on the three best performing links. Table [2| shows the 95% intervals for

the top three links based on Algorithm [2

Interval accounting for

Point estimate
measurement error

Link 1 10.43 [8.69, 14.15]
Link 2 9.54 [7.31, 10.83]
Link 3 7.31 [6.78, 8.18]

Table 2: Uncertainty quantification for the return on investment for the three links from Allen
and Arkolakis (2022) with the highest return on investment. Link 1 is Kingsport-Bristol (TN-
VA) to Johnson City (TN), link 2 is Greensboro-High Point (NC) to Winston-Salem (NC)
and link 3 is Rochester (NY) to Batavia (NY). The intervals based on measurement error
report the 2.5th and 97.5th quantile of the estimated posterior distributions.

From a policy perspective it is of interest whether the ranking between these links can
change due to measurement error. Therefore, Table [3| shows the 95% intervals for the dif-
ference between link 1 and link 2, and the difference between link 2 and link 3[1] It follows
that the rankings are generally robust against measurement error. Additional discussion and

analyses can be found in Appendices and [E.3]

' This simple exercise is intended purely for exposition. For a more formal treatment of inference on ranks,
see Mogstad et al.| (2024]).
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Interval accounting for
measurement error

Link 1-Link 2 0.89 0.38, 5.39]
Link 2-Link 3 2.23 [-0.05, 3.27]

Point estimate

Table 3: Uncertainty quantification for the differences in return on investment between the
three links from Allen and Arkolakis| (2022) with the highest return on investment. Link
1 is Kingsport-Bristol (TN-VA) to Johnson City (TN), link 2 is Greensboro-High Point
(NC) to Winston-Salem (NC) and link 3 is Rochester (NY) to Batavia (NY). The intervals
based on measurement error report the 2.5th and 97.5th quantile of the estimated posterior
distributions.

7 Conclusion

This paper develops an econometric framework for quantifying the impact of measurement
error in a broad class of quantitative trade and spatial models. Unlike standard econometric
models of measurement error, the counterfactual estimand in these models depends directly
on the realized data rather than on the underlying distribution. I adopt an empirical Bayes
approach to characterize uncertainty in counterfactual predictions and propose a default
specification that can be easily implemented across a range of applications. Applying the
framework to the settings in |Adao, Costinot, and Donaldson| (2017)) and |Allen and Arkolakis
(2022), I find substantial uncertainty surrounding key economic outcomes. These results
underscore the need to account for measurement error when using quantitative models to

guide policy decisions.
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Appendix

A  Finding g in Two Leading Classes of Models

This section informally discusses how to find the function g for two leading classes of models,
namely invertible models and exact hat algebra models. To make this distinction clear it
is useful to introduce fundamentals X € X C RY, which are parameters that are linked
deterministically to the data D. Examples of fundamentals in quantitative trade and spatial
models are trade costs and productivity levels. For example in the Armington model in Sec-
tion [} the fundamentals are X = ({7;;}, {xi;},{#:}). In contrast, the structural parameter
f is a function of the distribution of the data Pp.

We are then generally interested in the effect of proportional changes to the funda-
mentals X. Denote these proportional changes by X<P©P ¢ Rex  For example in the
Armington model in Section , the proportional changes in fundamentals are X<HProP —
({1401-I{i#j}}.{1},{1}). In particular, we want to find the corresponding propor-
tional changes to the observed data, DProP ¢ R, Qur scalar prediction of interest, -y, will
then be some function of (X cfprop 1) @, DCf’pr"p). Hence, it suffices to focus attention on the
mapping

Xcbprop 1y gy Detiprop, (14)

I will now argue that both invertible models and exact hat algebra models satisfy this map-

ping, which makes them essentially equivalent for the purposes of uncertainty quantification.

A.1 Invertible Models

Redding and Rossi-Hansberg| (2017) define a model to be invertible if there exists a one-to-
one mapping from the observed data and structural parameter to the fundamentals. Once

we have obtained the levels of the fundamentals, we can apply the proportional change of
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interest and find the corresponding proportional changes to the observed data. The high-level

steps of this approach are:

1. “Back out” the levels of the fundamentals X using the observed data D and the struc-

tural parameter 6.

2. Find the counterfactual levels of the data D ® DP™P from the counterfactual levels
of the fundamentals X ® XPP and the structural parameter @, where ® denotes

element-wise multiplication ]’

3. Find counterfactual changes variables DP™P using the counterfactual levels of the

data D ® DPP and the baseline levels of the data D.

Existence of the mapping in Equation follows.

A.2 Exact Hat Algebra Models

Exact hat algebra models (Costinot and Rodriguez-Clare, 2014) are models for which the
mapping in Equation holds “directly”, without the intermediary step of backing out the
levels of the fundamentals. The Armington model presented in Section [5] is one such exact

hat algebra model.

B Details for Relation to Dingel and Tintelnot| (2025)
B.1 Details for Covariates-Based Approach
The specific form for h;; (¥) in Equation is

e (N5 \ ¢
w; (Ti 511)

ns \ 7€’
>ea i (rd0a)

hij () =

12Here, assume that the equilibrium conditions are unique, so that for each (X, 6) there exists a unique D
(possibly up to a multiplicative constant).
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where w; denotes the wage in location j, r; denotes the land rent in location i, &j de-
notes the time component of commuting cost, £ denotes the commuting elasticity, and

1 denotes a Cobb-Douglas preference parameter. Since {Sij} are known, it follows that

0= ({ar} fas=pe) = (0 fuih o)

B.2 Using Matrix Approximation Techniques

In the truncated singular value decomposition approach in Dingel and Tintelnot| (2025), the
recommendation is to use an approximated matrix instead of the matrix with noisy flows
{gw} To see this approach can be nested in my Bayesian framework by, defining £ = {EZ]}

and £ = {{;;}, consider the following prior and measurement error:

prior : mPrior (L A) =46, A€ A={B:rank(B) <7}

measurement error : L=L+E, &j SN (0,1)

In this case, the empirical Bayes step solves:

A=arg max/exp <—% Z <£~l] _ Eij>2> d4(L)dL

AcA i
. 2
= argmaxexp [ — E—AH ,
AeA E

where ||| denotes the Frobenius norm. This maximization problem is equivalent to project-
ing the noisy flows onto the space of matrices that have a rank no larger than 7, which, by
the Eckart—Young-Mirsky theorem, is solved by the truncated singular value decomposition.

This yields the estimated prior and measurement error model

prior : qrprior (E; fl) =05, AcA={B:rank(B) <7}

measurement error : L=L+E & S (0,1)
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Using Bayes’ rule we can then find the estimated posterior for the true flows

So the posterior is a point mass at the counterfactual prediction that uses the approximated
matrix A. It follows that the truncated singular value decomposition approach is a special

case of Algorithm (1| by choosing the prior and measurement error model as in Equation .

C Details for Estimation Error

The counterfactual prediction of interest will typically depend on a structural parameter 6.
It is common in applied work to plug in a fixed value for the structural parameter taken
from the literature or obtained through data-driven methods, thus ignoring the uncertainty
associated with the estimation process. I will discuss two different approaches to dealing

with estimation error.

C.1 Frequentist Approach to Dealing with Estimation Error

Let 6 denote the estimator of the estimand #. This estimand is usually a function of the
distribution of the data Pp. This implies that, to address measurement error affecting the
structural parameter, one can apply the frequentist measurement error techniques discussed
in Section to find a bias-corrected estimate, though the resulting correction will not

admit a Bayesian interpretation.

C.2 Bayesian Approach to Dealing with Estimation Error

Alternatively, one can take a Bayesian or quasi-Bayesian approach and assume that the

posterior or quasi-posterior distribution of the true structural parameter 6 given the data
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D is approximately normal.H Specifically, we have the estimation error posterior (with
superscript “post,ee”)

7Pt (9] D) m A (é (D), % (D)) , (16)

where ¥ (D) is a consistent estimator of the sampling variance of 9~(D)

We can then generate draws from the posterior distribution of € given D.E For each of
these draws, we can calculate the corresponding value of the counterfactual object of interest
using the relationship v = ¢ (D, #). This allows us to find the posterior distribution of ~

given the true data, 7% (y|D).

C.2.1 Combining Measurement Error and Estimation Error

The object of interest is a function of the true data and the structural parameter. It follows
that we must consider estimation error, the direct effect of mismeasurement, and the indirect
effect of mismeasurement through the estimation procedure. Our goal is to quantify uncer-
tainty about v when we observe D by accounting for these various sources of uncertainty.
Recall that we have obtained two different posteriors. The first one is the posterior
distribution of 7 given the true data, 7°°"° (~|D), which incorporates estimation error. The
second one is the posterior of the true data given the noisy data, wPost:me <D\l~?; 1§>, which
incorporates measurement error (with superscript “post,me”). We can combine these two

posteriors uncertainty quantification and point estimation for vH

13Formally, this normality could follow from assumptions on the underlying data generating process such
that a Bernstein-von Mises type result holds (Van der Vaart| [2000). In that case the influence of the
prior distribution 7 () becomes negligible and the posterior distribution approximately equals a normal
distribution centered at the maximum likelihood estimator. In|Sanders|(2025]) I engage further with structural
estimation in quantitative trade and spatial models.

14This notation nests the scenario where we use an estimator from another study that used different data.

In that case 6 is independent from D and we would write 7Pst¢¢ (9| D) ~ N (5, f]) Furthermore, in the

case where 6 is known to be non-negative, one can use a log-normal distribution here.

I5Note that this assumption is on the structural parameter 6, and not on the fundamentals as discussed in
Appendix . One could additionally use a degenerate posterior 7P°%¢¢ (X |D) = dx on these fundamentals,
since they are parameters that are linked deterministically to the data D, and hence there is no estimation
error.

16Note that one could in principle use a single prior 7 on the underlying data generating process to handle
both estimation error and measurement error. I instead combine two simple priors to separately handle
estimation error and measurement error, since this leads to highly tractable procedures, albeit at the cost of
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For uncertainty quantification, I recommend to report an interval C to which, in posterior

expectation over D, the posterior 7P*% (y|D) assigns probability 1 — «:
I postme [Prwpost,ee {v e C|D}|D: qﬂ >1-a

In practice, given D one would generate draws from 7Post-me <D|D; 15), and for each of these
draws obtain a corresponding draw from 7P°<¢ (y|D)["] Then, one would report the a/2

and 1 — a/2 quantiles of this second set of draws.@ This is summarized in Algorithm .

Algorithm 4 Uncertainty quantification about v = g (D, 6)

1. Input: prior 7P"°" (D;4)), measurement error model 7™ ([D\D;ﬁ), quasi-posterior

7Postee (9| D), noisy data D, number of bootstrap draws B, coverage level 1 —a (choose
B and « such that a/2- B € N).

2. Empirical Bayes estimation step: U = arg max [ 7™° (l~)|D; 19) 7P (D 9) dD.
9

3. Construct estimated posterior: gPost:me <D|l~); 19) o e <D|D; 1§> rprior <D; 1§>
4. Forb=1,..., B,
(a) Draw D, ~ gPost-me <D|D; 5‘)

(b) Draw 6, ~ 7Pt (9| Dy).
(c) Compute v, = g (Dy, ) -

5. Sort {7}, to obtain {fy(b)}le with /() <~ < < ~B),

6. Report [y(@/2B) A((1=a/2-B)]

As in Section [3.3] a natural point estimator for the structural parameter is the median

complicating the Bayesian interpretation of resulting intervals.

I71f an estimator from another study is used, then 7Pt (§|D) ~ N (é, i) In that case, we can draw
0y and Dy separately, which makes the algorithm much faster.

18When obtaining draws from sPost:me <D|D; 5) is computationally expensive, it could help improve com-
putational speed to take multiple draws of @, for the same Dj.
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of the estimated posterior of the structural parameter given the noisy data,

and a natural point estimator for the counterfactual prediction is the median of the estimated

posterior,
ﬂ-Post (,ﬂ[)7 1§> — /ﬂ.post,ee (”}/|D) 7T.pos‘c,me <D|D, 51) dD.

These posterior medians can be calculated using the draws obtained in steps 4b and 4c in

Algorithm [4], respectively.

C.2.2 Frequentist Consistency

A caveat of the proposed Bayesian approach to dealing with estimation error is that it will
not guarantee frequentist consistency of the estimator. To see this, consider the stylized

model where we have measurement error in the independent variable of a simple regression:

(
. . _ Cov(Y;,X;)
Regression : 0 = Sty
Measurement error : Xi=X,+¢e -
Prior : X, =06Z;+ v
\

for g;, Z;, v; mean-zero normal random variables. We would then estimate the hyperparam-
eter 8 by noting that

Xi = BZZ + V; + Ei,
and we would use the estimator

g ) ot e
@(Zi) Var (Z;)
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Under this setup, for some posterior weight w,, € [0, 1], draws from the posterior X ~

spost ( X¢|Xi> Zi; B) can be represented as

X;k = wpo . Xl + (1 — wpo) . BZZ
Cov (1/7; + Ei, Zz)

N Wpo - X; + (1 —wpo) - BZ; + (1 — wpo) Var (Z) Z;
Cov (v; + &;, Z;)
=X, + Wpo - €i — (1 — wpo) - 3 + (1 — wpo) Var (Z) Z;.

N

-~

=pi

Here, p; captures the deviation of the posterior draw from the truth, which has mean zero
but non-zero variance. The probability limit of the regression coefficient based on posterior

draws then satisfies
Cov (Y;, X)) p Cov (Y, X; + i)
Var (X}) Var (X; + p;)

Cov (Y3, X5)

which does not generally equal § = Var(X))

D Details for Application Adao, Costinot, and Donaldson

(2017)

D.1 Model Details

In the empirical application of|Adao, Costinot, and Donaldson| (2017)), the authors investigate
the effects of China joining the WTO, the so-called China shock. Going forward, @); ; denotes
the factor endowment of country 7 in period ¢, 7;;; denotes the trade cost between country ¢
and j in period ¢, \;;+ denotes the expenditure share from country ¢ in country j in period ¢,
Y;: denotes the income of country ¢ in period ¢, and F;; denotes the factor price of country
¢ in period ¢t. Furthermore, p;; denotes the difference between aggregated gross expenditure
and gross production in country ¢ in period ¢, which is assumed to stay constant for different

counterfactuals. Lastly, ¢ denotes the trade elasticity and y; (-) denotes the factor demand
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system of country .
In |Adao, Costinot, and Donaldson| (2017), two demand systems are considered, normal

CES and “Mixed CES”. I will focus on normal CES, so that

exXp {61']'715}
L+ 370 exp {digs}

Aije = Xi ({6ije}) =

for 0;;; some transformation of factor prices. The function x; ' (:) then maps the observed
expenditures shares to values of this transformation. The structural parameter ¢ is estimated
by assuming a model on the unobserved trade costs {;;;}, and is estimated using GMM with
as an input the expenditure shares {\;;;}.

The counterfactual question of interest is what the change in China’s welfare is due to
joining the WTO. This question is modeled by choosing the counterfactual proportional
changes in trade costs, {Té{}pmp}, such that Chinese trade costs are brought back to their
1995 levels:

cfprop _ T4, e or j is China,

<) ,
v Tijt

icjf’tpmp =1, otherwise.
Welfare is then defined as the percentage change in income that the representative agent

in China would be indifferent about accepting instead of the counterfactual change in trade

cf,prop : . s cf,prop
costs from {7;;} to {Tij,t Tijyt}. These proportional changes in China’s welfare {WChina,t

can be obtained from first solving for {P;i’pmp} using the system of equations

exp {Xi_l ({)\ij,t}) —¢clog <Pz‘(:£7pr0p7'i(;{%pr0p> }

_ cf,prop _cf,pro
; 1+ Zz>1 exp {Xe ! ({Nije}) —elog (Pe,t Y pTZj,tp p> }

cf,prop __ pcf,prop
{PEP™Y50 + pya | = PP i,
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and then using

Pi(ji,prop ZZ [le <{)\1J:t})j| -

VVici,prop — 100 -
’ f,pr f,pr ¢
>0 [Pfc,t ’ OpTz'Ce,tp o ({)‘wt})]

-1

D.2 Calibration Procedure and Computational Details

The default approach from Section [4] can be applied. For the empirical Bayes step, the
calibration of 1J, we can use the mirror trade data setting from Section 4.2.2

In preprocessing the mirror trade dataset from |Linsi, Burgoon, and Miigge| (2023)) I made
some additional assumptions. Firstly, I only consider data from the period that is considered
in |Adao, Costinot, and Donaldson| (2017)). Secondly, I only consider trade flows between
countries that the authors of that paper consider. This amounts to aggregating Belgium
and Luxembourg, and Estonia and Latvia. All the remaining countries I aggregate to “Rest
of World”. Thirdly, when only one of the mirror trade flows is reported, I interpret this as
zero measurement error by setting the unknown mirror trade flow equal to the observed one.
Relatedly, when both mirror trade flows are not reported, I interpret this as there being no
trade, and when one trade flow is zero and the other is substantially larger than zero, I set
the zero trade flow equal to the non-zero one. Lastly, I follow |Adao, Costinot, and Donaldson
(2017) by setting zero trade flows to 0.0025 (million USD). There are however only a handful
of zeros due to the aggregation into “Rest of World”.

When estimating the prior distribution of the true underlying trade flows, I use the
distance dataset from Mayer and Zignago| (2011). For the distance between countries and
the “Rest of World”, I take the average of the distances to all other countries that are
considered in |Adao, Costinot, and Donaldson| (2017)).

An important consideration is that there is a substantial difference between the trade flows
used in |Adao, Costinot, and Donaldson (2017)), which come from the World Input Output

Dataset (WIOD), and the mirror trade flows from |Linsi, Burgoon, and Miigge, (2023), which

43



are based on the IMF Direction of Trade Statistics dataset. To overcome this discrepancy;,
I scale the mirror trade data to make them comparable to the trade flows from WIOD. I
set F;7 0 = FACD and F;)P = [2, - FACP/FL,, for FASP the noisy trade flow as used
in |Adao, Costinot, and Donaldson| (2017). There were also some trade flows in the mirror

trade dataset that reported zeros but had a large trade flow in the WIOD. For these trade

flows, I set the zero mirror trade data entries equal to the positive WIOD entry.

D.3 Supplementary Analyses
D.3.1 Winsorized Measurement Error Variances

The distribution of measurement error variances has a heavy right tail, with the noisiest
bilateral trade flow the one from Mexico to Australia with a measurement error variance of
1.42. One might be worried that this heavy tail drives the sensitivity to mismeasurement.
Figure |3| replicates Figure [2| but now winsorizing the measurement error variances at 0.2,
but keeping the posterior variances constant. This amounts to winsorizing 27% of the trade

flows. There are no substantial differences between Figures [3 and

D.3.2 Testing Normality Assumption and Gravity Model for the Prior

As outlined in Remark [I] we can check how reasonable the normality assumption is by
comparing the histogram of the normalized residuals with the probability density function
of a standardized normal distribution. The result can be found in Figure [ It follows that
the normality assumption seems reasonable.

Concerning the gravity model, restricting attention to the year 2011, the regression for
the prior mean in Equation has an adjusted R-squared of 0.95, and the coefficient on
log distance is -0.277 with a t-statistic of 3.346. Furthermore, Figure [5| follows |Allen and
Arkolakis (2018) by plotting a linear and nonparametric fit of log trade flows against log
distance, after partitioning out the origin and destination fixed effects. Together, the high

adjusted R-squared and the good performance of the linear fit imply that the gravity model
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is a reasonable choice for this setting.

E Details for Application Allen and Arkolakis (2022)

E.1 Model Details

In the empirical application of |Allen and Arkolakis (2022), the authors investigate what
the returns on investment are of all the highway segments of the US Interstate Highway
network. Going forward, L denotes aggregate labor endowment, Y denotes total income in
the economy, (); denotes the productivity of location 7, A; captures the level of amenities
in location ¢, 7;; denotes the travel cost between locations ¢ and j, Fj; denotes the traffic
flow between locations ¢ and j, y; denotes total income of location ¢ as a share of the total
income in the economy, ¢; denotes the total labor in location i as a share of the aggregate
labor endowment, and x captures the (inverse of) the welfare of the economy. The parameter
vector is 0 = («a, 3,7, V), where @ and § control the strength of the productivity and amenity
externalities respectively, v is the shape parameter of the Fréchet distributed idiosyncratic
productivity shocks, and v governs the strength of traffic congestion.

It is shown in the paper that we can uniquely recover ({yff’pr(’p} , {fff’pmp} , ch,pmp)
ij

given any change in the underlying infrastructure network {TCf’pmp} and baseline economic
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activity {yz}_/}, using the system of equations

1+v+y —0(1+a+v(at+p))

cf,prop\ 1+v cf,prop 1+v
<yi ) ¢

\/ 1+v+ y(B-1)
— ch,prop < _ yZY ) (ygf,prop) 1+’/W (egf,prop) 14v
uiY + >, Fi ’ ’
+ Z ‘FZ (ch,prop> % ( cf,prop) 112 (gcf,prop) 771(‘1*?1)
yiY + 3, Fu Y Ui !

J
v y(1=f—v(a+B))

-7+
cf,prop\ 1+v cf,prop 14+v
(yi ) l;

% =yt (at1)
— chzme < S, A A — in ) (y.cf,prop> % (ﬁ‘?ﬂprop) Wl-&-tl
viY + Zk F; ¢ v

+ _ (Tic' :PTOP> <y0 7PTOP) <£c ,prop) .
S () (7 : :

J

Having obtained x°“P™P the proportional counterfactual change in welfare is then calculated

using
(ch,prop) 1/

ch,prop — _
LotB

E.2 Calibration Procedure and Computational Details

The default approach from Section [4] can be applied. For the empirical Bayes step, the

calibration of ¥, we can use the baseline case with domain knowledge from Section [4.2.1]
When I run the code from |Allen and Arkolakis (2022)), the returns of investment for the

links systematically differ slightly from the ones in the paper. I scale my estimates so that

the unperturbed estimates align with the ones in the paper.

E.3 Supplementary Analyses
E.3.1 Probability that Rankings are Reversed

We can learn more from the posterior distributions than just intervals. It might be of

interest what the expected probability is that the ranking of the three links are reversed.
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The expected probability that the ranking between link 1 and link 2 is reversed is 0.000, and

the expected probability that the ranking between link 2 and link 3 is 0.030.

E.3.2 Testing Normality Assumption and Gravity Model for the Prior

We can again check the reasonableness of the normality assumption as per Remark [1} The
result can be found in Figure[6], and it follows that the normality assumption is less reasonable
compared to the setting of /Adao, Costinot, and Donaldson| (2017)).

Concerning the gravity model, the regression for the prior mean in Equation has an
adjusted R-squared of 0.9995, and the coefficient on log distance is 1.003 with a t-statistic
of 1138. It follows that log distance is an important driver of log traffic flows, but not in
a negative way as is common in gravity models. Furthermore, Figure 7| follows Allen and
Arkolakis (2018) by plotting a linear and nonparametric fit of log traffic flows against log
distance, after partitioning out the origin and destination fixed effects. Together, the high
adjusted R-squared and the good performance of the linear fit imply that the gravity model

is a reasonable choice for this setting.

F Misspecification of the Measurement Error Model and Prior

We are interested in the potential effects of misspecification of the measurement error model
or prior. Specifically, focusing on the widely applicable default approach from Section 4] we
would like to know how the quantiles of the posterior distribution of the counterfactual object
of interest given the noisy flows change when the assumptions of a normal measurement
error model or a normal prior do not hold. Suppose for exposition that there are no zeros

and the hyperparameters 1 are known, so that we can obtain the posterior distribution

o o e}
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F.1 Measurement Error Model

Let L ({log F};}) = 7™ <{10g Fw} | {log FZ]}) denote the likelihood function of the noisy log
flows {log EJ} given the true log flows {log F};}. For a given ¢ > 1, define a density-ratio
class of distributions to be the set of all conditional distributions for {log F'Zj} with pdf p

such that

1
pER. = {peP:;-L<x>Sp<m>3c-L<x> V:UGR”("“)},

for P the set of all pdfs.
For uncertainty quantification, we are interested in the quantiles of the posterior distri-
bution 7Post (h ({log Fi;}) | {log Fm}) for a generic function h (-). Denote the a-th posterior

quantile based on likelihood p by Q4 ().

Proposition 1. We have:

ac?
sup Qﬂ,p,h (Oé) = QT{',L,h (1—>

PER. —a+ ac?
inf Q - Q -
per, CmPh (@) = Qn.r.n a+(1—a)cz)’

So instead of reporting the interval

[QTK‘,L,h (a/2) ) QTI‘,L,h (1 - 04/2)]

one could report the robust interval

00 (rasare) o (207000

For example for o = 0.05 and ¢ = 1.5, we would consider the 1.1%-quantile and the 98.9%-

quantile, instead of the 2.5%-quantile and the 97.5%-quantile, respectively.
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The result in Proposition [1] follows from noting that

a= / " () [7) dh (2) = / TP (2|7) da

—00 z€h~1([—00,q])

= p () 7P (2) do = a / p (x) TP (1) d.
aeh~1([~o0.q]) L —a Jogh—1 (o)

Focusing on the upper bound, it follows that we want to choose p (x) on the left-hand side

as small as possible and p (x) on the right-hand side as large as possible for all x:

1 Q

- L (z) 7P () do = c L (z) 7P (2) da
¢ /fﬂehl([—oo’qé‘up]) l—a /ff%hl([—ooﬁqiup])

= /_ qoo Post (h () | {1og Ej}) dh (z) = — 2

1—a+ac?

F.2 Prior

Note that the likelihood L and the prior 7P"°" enter the posterior in exactly the same way,
so we can interpret the procedure in the previous subsection also as sensitivity analysis with

respect to the prior.

G Calibration with Mirror Trade Data

G.1 Model

I use the mirror trade dataset from [Linsi, Burgoon, and Miigge (2023). This dataset has
two estimates of each bilateral trade flow, both as reported by the exporter and as by the

importer. I interpret this as observing two independent noisy observations per time period
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1 [2
Ej7t’ F;Jvt

for each bilateral trade flow: {{

true zeros :

spurious zeros :

G.2 Bernoulli Parameters

+[BE st (1 BY) - By b

T
} } . It is helpful to rewrite the model:
t=1 L.
i#j

P+ ~ Bern (p;;)

Bl B2

Z]7t’ Z-]?

. ~ Bern (b;)

Fij’t ~ Pz.j,t <0 + (1 — Pij’t) . etigit . Mgt

prior : ijr = B log dist,; + Oz?;ig + a%s‘;
Mija ~ N (0, s3)
F | Fijy ~ 80 - T{F;, = 0}
likelihood : + [B}j,t 0o+ (1= Bl,) - Fyja- egllﬂ%t] -I{Fiju > 0}

F3 | Fyjy ~ 80 - I{Fyj = 0}

2

] I{F;, > 0}

1

Eijtr

efjjt ~N (O, 92])

For a given bilateral trade flow from 7 to j in period ¢, we can compute the ex-ante probability

of observing a certain number of zeros:

Pr{two observed zeros} = p;; + (1 — py;) - b

Pr{one observed zero} =2+ (1 —p;;) - (1 —

Pr{no observed zeros} = (1 — p;;) - (1 —

bij) - bij

bij)” .
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We can use the time variation to identify the probabilities on the left-hand side:

T
1 . .
Gj2 =% § 1 {Fét =0,k = 0}

T
1 - ~ ~
%1 = 7 ZH{Fét =0, Fj, >0 or F

> 07 ‘Fii',t = 0}

7,

T
1 - .
Bio= 7> 1 {Fl.;t >0,F2, > o} .
t

1

When Z;;9, Zij1, Zijo € (0,1), we can back out the estimated probability of a true zero p;;

and the estimated probability of a spurious zero I;ij by solving

Zijo = Pij + (1 — Pij) - 622]
Zija =2+ (1 —py) - (1 - 52‘1) by

~ 2
Zijo = (1= Py) - (1 —bij ) -

The solutions are

~ ~ 2 ~
_ (Zij1 + 2%50) o Zja
pij = max 1-— Az ,O 3 sz - - .
Zij.0 Zij1 + 2250

I separately consider the possible cases where the estimated probabilities (Z;;2, Zij1, Zij0) are

not all strictly between 0 and 1:

1. Zijo = 1,25, = 0,250 = 0: In this case we observe only zeros so I set the estimated
probability of a true zero p;; to 1, which makes the estimated probability of a spurious

zero by irrelevant.

2. Zijo = 0,21 = 1, Zij0 = 0: In this case one country always reports a positive flow and
the other reports a zero flow. In this case I set the estimated probability of a true zero

pi;j to 0, and the estimated probability of a spurious zero Bz-j to 0.5.

3. Zijo = 0,%Zi;1 = 0,%;0 = 1: In this case all reported flows are positive, so I set both
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the estimated probability of a true zero p;; and the estimated probability of a spurious

Zero l;ij to 0.

. Zijo € (0,1), 251 € (0,1), 20 = 0: In this case there are no years with two reported
positive flows. In this case I set the estimated probability of a true zero p;; to Z;;2, and

the estimated probability of a spurious zero Eij to Zij1.

- Zij2 € (0,1),Z1 = 0,Z;0 € (0,1): In this case some years have two zeros and other
years have two positive flows. In this case I set the estimated probability of a true zero

Dij to Zij2, and the estimated probability of a spurious zero Bij to 0.

. Zijo = 0,Z;1 € (0,1), 250 € (0,1): In this case there are no reported double zeros
so I set the estimated probability of a true zero p;; to 0. I then solve the system of

equations:

Zija = Pr {one observed zero|no spurious zeros, observed zeros < 2}
B 2bs (1 - bz’j) 2
= — - —— = J
2y (1-bi) + (1=by)  1H0o
Zijo = Pr {no observed zeros|no spurious zeros, observed zeros < 2}

(1_6”)2 _1-by

~ ~ ~ 2 70
2b;; (1 - bl-j> + (1 - bz-j> 1+ by

and find
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G.3 Measurement Error Variances

We can combine the model equations to find:

log F. th = [ log dist;; + ozomg +a deSt + i + €W, Fét >0

log F. w + = B log disty; + ozong + oszSt + Niji + €?j’t, Fj . >0,
fore,7=1,...,nand t =1,...,T. Subtracting these two equations yields

>0, F?

ig,t

log -

b —log Bl =cl, —el, ~N(0,2), F} > 0,

15,6 zg t 15,t 17,

fore,7=1,...,nand t =1,...,T. This suggests the estimator

~2 {Ztl { ZJt>OF3t>O} }

gij =

2
ZH{ zyt>0 th>o}.<log17@1]t 10gF£t>
Ztl { 1jt>OFz?7t>0} t=1

DO | —

for i, 7 = 1,...,n. So note that county-pairs with no entries with two positive flows will have
an estimated measurement error variance of 0. Note that the estimator is unbiased even with
access to one period of mirror trade data (assuming both flows are non-negative). Obtaining
estimators for the measurement error variances is what [Walters (2024)) calls the estimation

step.

G.4 Prior Means

7,t i5,t"

For the calibration of ({Bt} {anp , {ozi.mp}>, I use Fz‘j,t — [L,. We then know that

log szt ~N (Bt log dist;; + ozong + ?‘ft, si; + §1J> for Fij,t > 0, (17)
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fore,7=1,....,nand t =1,...,T. Using maximum likelihood estimation, it follows that the

prior mean parameters can be estimated from the within-period regressions
10g Ej,t = ﬁt log diStij + Oé?;ig + Oé?;St + Cij,t; for Fij,t > 0, (18)
for t =1,...,T, with (;;; an error term. The estimated prior means are

fugu = (Bogdisty +a55% + a) -1{Fy, > 0
H{ZST:J{EJ',S >0} >0} T |
! ' Z {ﬁs log diStZ-j + &Zl;lg + &;{esst} :

Zstl I {Fz’j,s > 0} 1

fore,7=1,....,nand t = 1,...,T. Note that for zero flows, the prior mean is imputed using
an across-period average, and fi;;, is only zero if Fij,t is zero in all time periods for that

country pair.

G.5 Prior Variances

From Equation (17)) it follows that the posterior variances can be estimated by
§?j = max {\7;; (lOg F;'jﬂg — [Lij,t|F~1ij,t > 0> — 622], O} ,

for ¢,7 = 1,...,n. Here, I again impute across periods for zero flows. Obtaining estimators

for the prior means and variances is what |Walters (2024)) calls the deconvolution step.

G.6 Shrinking Variance Estimates
To leverage country information and the fact that importers and exporters can differ in their

reliability, and reduce the variability for {¢Z} and {52}, I fit the models

" G,orig G,dest < - s,orig s,dest s
gZZ — i +r; +u;; and S?] = el 5 +ui17 (19)
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g,orig ¢,dest

,ori ,dest
Hat 2N and K

fori,j =1,...,n, with & ) K; y country-origin and country-destination

fixed effects and u;; and u; error terms. Then, rather than using ¢ and 57, I will use the

K

~g,orig | ~¢,dest . s
TR and 8 = e

09 &S ~s,orig+l~€5§,dest
fitted values ¢;; = €™ i

G.7 Posterior Draws

It follows that the estimated posterior distribution for the true flow between location 7 and

J, Fij+, given its noisy version, Fj;, is given by

Qij - b0+ (1 — Qi) - N (Puth) Fij =0

Eij e Fije, 0 ~ . \ ) :
N2 oo By 4+ =i, (L4 L 2
exp §12j+§oi2j 0g L4t + g?ﬁ‘ffj Mijt, 533 + &z EJ >0

. _ o _DPij
fori,j=1,..,nand t =1,...,T, where @);; ~ Bern <ﬁij+bij(1—ﬁ¢j)>'

G.8 Diagnostics

From Equation , one can verify how reasonable the normality assumption on the prior

and measurement error model is by comparing the histogram of the normalized residuals

log Fyjt — fliji
A /s?j + §i2j N
i7.j7t7 Fz],t>0

with the probability density function of a standard normal distribution. To further check
the reasonableness of the gravity prior, we can look at the adjusted R-squared of the gravity
regressions in Equation (18)), and, following |Allen and Arkolakis (2018), plot the log flows

against the log distance, after partitioning out the origin and destination fixed effects.
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G.9 Computational Implementation Details

In the case where for all years one country reports only positive flows and the other country
reports only NAs, I replace the NAs by the positive flows. After this initial replacement

step, I replace the remaining NAs by zeros.

H Details for Armington Model

H.1 Derivation of System of Equations for {Y;""*"}

Rearranging Equation and recalling that \;; = Fj;/E; yields:

(75;Y3) ™" X4

= Xi =10 (21)
L (Y T

Next, plugging in Equations and into Equation (10]) yields
-Fij:)\ij (1+I€j)Yj7 i,j:]_,...,n.
If we sum over j, we can use Y; = 22:1 Fy to find

V=Y N (L4 Y, =l (22)

J=1

In the counterfactual equilibrium, Equation should still hold. Because k; is constant

across equilibria for all 7, this results in:

Yry; = S UATPPNG (1 ) YPPY, =1, n, (23)

j=1
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Similarly, Equation should still hold in equilibrium. Using that x;; is constant across

equilibria for all 7, j, we find

1 ij
)\z‘jz cf,prop .ch,propY e )
k\ Tkj Thj Ly, k Xkj
— —€
(ch,prochf,prop) ¢ (TUYZ) Xij
e . —_—
1 " ’ Zz(Teré) Xej

)\z” -€ (T 'Y )_E ;
J cf ,prop~ ~cf,prop kj Yk Xkj
S (mpreryeteer)

T, —
& Zz(Tere) “xej

—&
cf ,prop cf ,prop
(7' i Y; Y Xij
cf,prop _
ij =

ij

cf,prop~ ~cf,prop
> ok Ak <Tkj Y, )

—
(ch,prop}/;cf,prop>
i j=1,..n. (24)

Finally, combining Equations and yields the desired expression

cf,pro cf,pro —¢

)

Ay (L4 k) VPPV i= T

Y;cf,propY% _ z :

; Zk )\kj (Tls§7propyvkcf,prop)
H.2 Results for Other Countries

Figure [8| reproduces Figure (1] for all 76 countries in the sample.

H.3 Calibration Procedure and Computational Details

The default approach from Section [4] can be applied. For the empirical Bayes step, the cali-
bration of 1}, we can use the mirror trade data setting from Section m To construct {F;},
I use the mirror trade data for bilateral flows {Fj;},,; and the trade flow data from Waugh
(2010) for own-country flows {F};}. Because the mirror trade data report zero bilateral trade

flows for Belgium, I exclude it from the analysis, resulting in a sample of 76 countries.

I Appendix Figures
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Figure 3: Uncertainty quantification for winsorized heteroskedastic normal shocks to
{log F};:} for the change in China’s welfare due to the China shock. The solid blue line
is the estimate as reported in |Adao, Costinot, and Donaldson| (2017)), the dotted light-blue
lines denote the intervals accounting for estimation error as reported in |/Adao, Costinot, and|
Donaldson| (2017, and the dashed red lines denote the intervals based on the estimated

posterior distributions 7Pt (gt ({Fiji}.e)] {Fmt} ,@) fort=1,...,T.
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Figure 4: Plot to compare the normalized residuals with the probability density function of
a standardized normal distribution to check whether the normality assumption for the prior
is reasonable for |Adao, Costinot, and Donaldson| (2017)).
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Figure 5: Plot that follows |Allen and Arkolakis| (2018) to check whether the gravity model
is reasonable for log trade flows in 2011 from Adao, Costinot, and Donaldson (2017).
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Figure 6: Plot to compare the normalized residuals with the probability density function of
a standardized normal distribution to check whether the normality assumption for the prior
is reasonable for |Allen and Arkolakis (2022).
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Figure 7: Plot that follows |Allen and Arkolakis| (2018) to check whether the gravity model
is reasonable for log traffic flows from |Allen and Arkolakis| (2022).
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