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Abstract

Counterfactuals in quantitative trade and spatial models are functions of the current

state of the world and the model parameters. Common practice treats the current state

of the world as perfectly observed, but there is good reason to believe that it is measured

with error. This paper provides tools for quantifying uncertainty about counterfactuals

when the current state of the world is measured with error. I recommend an empirical

Bayes approach to uncertainty quantification, and show that it is both practical and

theoretically justified. I apply the proposed method to the settings in Adao, Costinot,

and Donaldson (2017) and Allen and Arkolakis (2022) and find non-trivial uncertainty

about counterfactuals.

1 Introduction

Economists use quantitative trade and spatial models to evaluate counterfactual scenarios.

For instance, how do expenditure patterns across countries adjust in response to the im-

plementation of a trade agreement? How are welfare levels affected when transportation

infrastructure connecting regions is improved? These counterfactual questions are typically

posed relative to an observed factual situation. This implies that the estimand of inter-

est depends directly on the realized data, rather than on the underlying data-generating

distribution—a departure from standard statistical settings.
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This nonstandard structure is further complicated by the fact that data in quantitative

trade and spatial models are often measured with error (Goes, 2023; Linsi, Burgoon, and

Mügge, 2023; Teti, 2023). This gives rise to a novel measurement error problem: unlike con-

ventional settings, where the estimand is a function of the correctly measured distribution of

the data, here it depends on the correctly measured realizations. An additional complication

arises when the estimand also depends on a structural parameter that is itself estimated using

the noisy data. As a result, inference must account for three distinct sources of uncertainty:

(i) estimation error, (ii) the direct effect of measurement error on the estimand, and (iii) the

indirect effect of measurement error through the estimation of structural parameter.

To fix ideas, consider the canonical Armington model (Armington, 1969). In this model,

proportional changes in welfare due to proportional changes in trade costs can be expressed

as a function of baseline bilateral trade flows and the trade elasticity (Arkolakis, Costinot,

and Rodŕıguez-Clare, 2012). Because the trade elasticity is unknown, it is typically esti-

mated using the same trade flow data. The central question I address is how measurement

error in the observed bilateral trade flows translates to uncertainty in the predicted welfare

changes. As the Armington model illustrates, this uncertainty arises both directly—through

the mismeasured data used in the welfare formula—and indirectly—through the estimation

of the trade elasticity based on the same mismeasured data.

I outline a general Bayesian framework for quantifying uncertainty that incorporates

these various sources of uncertainty. The framework requires researchers to specify both a

measurement error model and a prior distribution over the latent true data. For settings

where the observed data consist of non-negative dyadic flows, I recommend default choices for

both components that can be calibrated using the observed data, yielding a default empirical

Bayes (EB) approach. Specifically, I suggest modeling measurement error as log-normal and

using a log-normal prior centered on a gravity equation, with additional mass at zero to

accommodate zero flows. This setup is designed for easy implementation and is well suited

to a wide range of quantitative trade and spatial models.

To illustrate the impact of accounting for measurement error, I revisit the settings in

Adao, Costinot, and Donaldson (2017) and Allen and Arkolakis (2022). For the counterfac-

tual analysis in Adao, Costinot, and Donaldson (2017), which quantifies the welfare impacts

of China’s accession to the WTO, I model measurement error in bilateral trade flows. I

apply my default EB approach, calibrating the prior and measurement error model using the

mirror trade dataset compiled by Linsi, Burgoon, and Mügge (2023). This dataset reports

bilateral trade flows as recorded by both exporters and importers, which I interpret as two
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independent noisy measurements of the latent true trade flow. I plot the estimated change

in China’s welfare from 1996 to 2011 and construct uncertainty intervals that reflect both

measurement error and estimation error.

In the setting of Allen and Arkolakis (2022), the counterfactual question concerns which

highway links in the United States yield the highest return on investment and thus are

most promising for improvement. I model measurement error in traffic flows and apply the

default EB approach, calibrating the prior and measurement error model using estimates

from Musunuru and Porter (2019). I compute uncertainty intervals that account for both

measurement error and estimation error for the three links with the highest estimated returns.

Although these intervals are wide, the relative ranking of the top three links remains robust.

This paper contributes to a growing body of work aimed at improving counterfactual anal-

ysis in quantitative trade and spatial models (Balistreri and Hillberry, 2008; Adao, Costinot,

and Donaldson, 2017; Kehoe, Pujolas, and Rossbach, 2017; Adão, Costinot, and Donaldson,

2023; Ansari, Donaldson, and Wiles, 2024; Sanders, 2025). The most closely related work is

Dingel and Tintelnot (2020), which studies calibration procedures in granular environments.

That paper considers models that presume a continuum of agents and shows that with limited

data, unit-level idiosyncrasies are absorbed into the model, leading to overfitting and poor

out-of-sample performance. My focus is on the complementary issue of uncertainty quantifi-

cation due to measurement and estimation error—an issue that persists even in non-granular

settings. Dingel and Tintelnot (2020) recommends using fitted values from a low-dimensional

model in place of the raw observed data. I show how this recommendation can be naturally

integrated into the Bayesian framework.

The remainder of the paper is organized as follows. The next section introduces the

notation and the setting I consider. Section 3 discusses how to jointly account for estimation

error and measurement error in quantitative trade and spatial models. Section 4 presents

my default empirical Bayes approach for uncertainty quantification. Section 5 applies the

method to the trade setting in Adao, Costinot, and Donaldson (2017) and explores its use

in the economic geography framework of Allen and Arkolakis (2022). Section 6 concludes.

2 Counterfactuals in Quantitative Trade and Spatial Models

This section introduces the notation and discusses the key assumption that commonly un-

derlies counterfactual analyses in quantitative trade and spatial models.
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2.1 Notation and Key Assumption

To begin, consider a baseline setting without estimation or measurement error. Let D ∈
D ⊆ RdD denote a data vector drawn from distribution PD, and let θ ∈ Θ ⊆ Rdθ denote a

structural parameter. Our objective is to compute a scalar counterfactual quantity γ ∈ R.
The key assumption that the counterfactual object of interest has to satisfy is:

Assumption 1. For a given counterfactual question and fixed parameter value θ, the coun-

terfactual object γ can be expressed as a function of the realized data D:

γ = g (D, θ) , (1)

for some known function g : D ×Θ → R.

The exact functional form of g depends on the specific quantitative model that is con-

sidered. In Appendix A I discuss Assumption 1 for two leading classes of models, namely

invertible models and exact hat algebra models.

Assumption 1 implies that if the data D are observed without error and the structural

parameter θ is known, we can perfectly recover γ.1 This is different from conventional eco-

nomic models, where the object of interest is a function of the correctly measured distribution

of the data, rather than the actual observations. So the key distinction with conventional

settings is:  conventional :

this paper :

γ = g (PD, θ)

γ = g (D, θ) , D ∼ PD.
(2)

Importantly, this difference implies that it would not suffice to be able to perfectly estimate

the distribution PD. Towards uncertainty quantification, we hence need to account for

uncertainty about the realized data themselves rather than their distribution.

2.1.1 Running Example: Armington Model

For illustration, I will derive the function g in a simple example. A canonical workhorse model

in international trade is the Armington model (Armington, 1969), as outlined, for example,

in Costinot and Rodŕıguez-Clare (2014). Countries are indexed by i, j = 1, ..., n, and with

CES preferences and perfect competition, it follows that the relevant gravity equations and

1Indeed, by fixing g I abstract away from model misspecification, an important problem I engage with in
future work.

4



budget constraints are:

Fij =
(τijYi)

−ε χij∑
k (τkjYk)

−ε χkj

Ej, i, j = 1, ..., n (3)

Ei = (1 + κi)Yi, i = 1, ..., n. (4)

Here, Fij denotes the trade flow from country i to j, and Yi =
∑n

ℓ=1 Fiℓ, Ei =
∑n

k=1 Fki and

κi = (Ei − Yi) /Yi denote country i’s total income, total expenditure and the ratio of the

trade deficit to income, respectively. Furthermore, τij denotes the iceberg trade cost between

country i and j, which means that in order to sell one unit of a good in country j, country

i must ship τij ≥ 1 units, with τii = 1. Lastly, ε > 0 is the trade elasticity and {χij} are

idiosyncratic terms.

Now, say we are interested in the counterfactual where we change the trade costs {τij}
proportionally by

{
τ cf,propij

}
, holding the trade elasticity ε, the idiosyncratic terms {χij} and

the trade imbalance variables {κi} constant. In Appendix B.1 I show that we can then solve

for the corresponding proportional changes in income,
{
Y cf,prop
i

}
, using

Y cf,prop
i Yi =

∑
j

(
τ cf,propij Y cf,prop

i

)−ε

∑
k λkj

(
τ cf,propkj Y cf,prop

k

)−ελij (1 + κj)Y
cf,prop
j Yj, i = 1, ..., n,

where λij = Fij/Ej denotes the expenditure share that country j spends on goods from

country i. By Walras’ Law, the proportional changes in income are only pinned down up to

a multiplicative constant. Subsequently, following Costinot and Rodŕıguez-Clare (2014), we

can exactly solve for proportional changes in expenditure shares and welfare levels:

λcf,prop
ij =

(
τ cf,propij Y cf,prop

i

)−ε

∑
k λkj

(
τ cf,propkj Y cf,prop

k

)−ε , i, j = 1, ..., n,

W cf,prop
i =

(
λcf,prop
ii

)−1/ε

, i = 1, ..., n.

The income levels {Yi}, the expenditure shares {λij} and the trade deficit variables {κi} are

all functions of the trade flows {Fij}, so the relevant counterfactual mapping is

{Fij} ,
{
τ cf,propij

}
, ε 7→

{
W cf,prop

i

}
.
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It follows that for a given counterfactual question as described by
{
τ cf,propij

}
, we only require

knowledge of the baseline trade flows {Fij} and the trade elasticity ε. So we have:

D = {Fij}

θ = ε.

The specific counterfactual question I consider is a 10% increase in all bilateral trade costs

between 76 countries, so that τ cf,propij = 1 + 0.1 · I {i ̸= j} for i, j = 1, ..., n. I focus on the

changes in welfare in the Central African Republic, the Netherlands, Sweden and the United

States. It follows that, fixing
{
τ cf,propij

}
, we have

γq = 100 ·
(
W cf,prop

q − 1
)
≡ gq ({Fij} , ε) ,

for each q ∈ {CAF,NLD, SWE,USA}. In Appendix B.2, I show the results for all 76 countries

in the sample.

3 Bayesian Uncertainty Quantification

This section introduces estimation error and measurement error to quantitative trade and

spatial models. It outlines how to jointly account for them and how to quantify uncertainty

for the counterfactual prediction of interest.

3.1 Introducing Estimation Error

The counterfactual prediction of interest will typically depend on a structural parameter θ.

In practice, θ is unknown and must be estimated from the data, yielding an estimator θ̃ (D).

It is common in applied work to treat this estimate as fixed—whether it is taken from the

literature or obtained through data-driven methods—thus ignoring the uncertainty associ-

ated with the estimation process. An exception is Adao, Costinot, and Donaldson (2017),

which reports confidence sets for the counterfactual predictions of interest that account for

estimation error.

I will take a Bayesian or Quasi-Bayesian approach and assume that the posterior or quasi-

posterior distribution of the true structural parameter θ given the data D is approximately
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normal.2 Specifically, we have

πEE (θ|D) ≈ N
(
θ̃ (D) , Σ̃ (D)

)
, (5)

where Σ̃ (D) is a consistent estimator of the sampling variance of θ̃ (D).3

We can generate draws from this posterior distribution of θ given D. For each of these

draws, we can calculate the corresponding value of the counterfactual object of interest using

the relationship γ = g (D, θ). This allows us to find the posterior distribution of γ given the

true data, πEE (γ|D).

3.1.1 Running Example: Armington Model (Continued)

As we saw before, for the Armington model we have D = {Fij} and θ = ε. In practice, the

trade flows are also used to estimate the trade elasticity ε. In particular, we can rearrange

the gravity equation in Equation (3) to find

Fij = exp


−ε log Yi︸ ︷︷ ︸

≡δorigi

+ logEj − log
∑
k

(τkjYk)
−ε χkj︸ ︷︷ ︸

≡δdestj

−ε log τij + logχij︸ ︷︷ ︸
≡δij


.

If we then treat δij = logχij as a preference shock orthogonal to log trade costs log τij, this

results in the non-linear regression model

Fij = exp
{
δorigi + δdestj − ε log τij + δij

}
.

In the presence of zero trade flows, this suggests using a PPML estimator as in Silva and

Tenreyro (2006). To obtain a valid estimate of Σ̃ ({Fij}) that accounts for dyadic dependence,
I use results from Graham (2020).

2Formally, this normality could follow from assumptions on the underlying data generating process such
that a Bernstein-von Mises type result holds (Van der Vaart, 2000). In that case the influence of the
prior distribution π (θ) becomes negligible and the posterior distribution approximately equals a normal
distribution centered at the maximum likelihood estimator. See Appendix C for a discussion on justifying
Equation (5) in this setting. In Sanders (2025) I engage further with structural estimation in quantitative
trade and spatial models.

3This notation nests the scenario where we use an estimator from another study that used different data.

In that case θ is independent from D and we would write πEE (θ|D) ≈ N
(
θ̃, Σ̃

)
. Furthermore, in the case

where θ is known to be non-negative, one can use a log-normal distribution here.
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A key challenge is that trade costs {τij} are not directly observed. To address this, I

use estimates from Waugh (2010), which are based on an arbitrage condition and follow the

methodology of Eaton and Kortum (2002). Waugh (2010) argues that these estimates are

subject to minimal measurement error. Accordingly, I treat them as accurate and proceed

under the assumption that there is no measurement error in this proxy for trade costs.

Appendix B.3 provides further details.

The resulting point estimate and standard error are 2.26 and 0.52, respectively. If we as-

sume there is no measurement error, we can find πEE (γq| {Fij}) for q ∈ {CAF,NLD, SWE,USA}
by sampling trade elasticities from πEE (ε| {Fij}) ≈ N (2.26, 0.522) and compute the corre-

sponding changes in welfare. This results in the point estimates and intervals as in Table

1 and the posteriors plotted in Figure 1. We observe that the Netherlands and Sweden

suffer the largest welfare losses. Note that all posteriors are non-Gaussian which results in

asymmetric intervals.

Point
estimate

Only
est. error

γCAF -0.72 [-0.95, -0.13]
γNLD -5.47 [-5.50, -5.37]
γSWE -3.77 [-4.14, -3.54]
γUSA -1.09 [-1.09, -1.03]

Table 1: Uncertainty quantification for the Armington model, considering only estimation
error.

3.2 Introducing Measurement Error

Under Assumption 1, our object of interest can be written as a function solely of the data

realizations and the structural parameter, which is convenient for answering counterfactual

questions. However, the data realizations are economic variables which are often measured

with error. For instance, Ortiz-Ospina and Beltekian (2018) and Goes (2023) highlight

that there are large discrepancies between and within various data sources from trade and

international economics. Motivated by this, I assume that, instead of the true data vector

D, we observe a noisy version D̃.4

4Alternatively, one can interpret the mapping from true data to observed data as a realization from a
stochastic process, rather than purely as classical measurement error. The Bayesian framework I propose
accommodates this alternative interpretation as well, since any such stochastic relationship between the true
and observed data can be encoded via a likelihood function π(D̃ | D).
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Figure 1: Uncertainty quantification for the Armington model, considering only estimation
error.

For uncertainty quantification for the counterfactual prediction, we will require the pos-

terior distribution of the true data given the noisy data. Towards that end, I introduce a

model for the measurement error and a prior distribution for the true underlying data. Given

such a prior distribution and a measurement error model, prior :

measurement error :

π (D)

π
(
D̃|D

)
,

we can use Bayes’ rule to find the posterior distribution of the true data given the noisy

data,

πME
(
D|D̃

)
=

π
(
D̃|D

)
π (D)∫

π
(
D̃|D

)
π (D) dD

.

This posterior distribution then allows us to generate draws from our posterior distribution

for the true data given the noisy data.5

5Note that the measurement error distribution does not have to be mean zero, so also allows for measure-
ment error bias. Nevertheless, even mean zero measurement error can result in bias in the counterfactual
prediction of interest. This is automatically taken into account by the Bayesian approach when quantifying
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The Bayesian approach allows researchers to incorporate economic knowledge through

the prior. For example when considering measurement error in non-negative flows between

locations one can fit a prior centered on a gravity model, which I will do in Section 4.

3.2.1 Running Example: Armington Model (Continued)

For the Armington model, I will assume that there is measurement error in trade flows {Fij}.
This is plausible because in Linsi, Burgoon, and Mügge (2023) it is shown that there are

so-called mirror discrepancies in bilateral trade flows between almost all countries. This

means that, for instance, while the value that Germany reports it imported from France and

the value that France reports it exported to Germany should be the same, in practice they

are often different.

Hence, instead of the true trade flows we observe noisy trade flows
{
F̃ij

}
, which in turn

lead to noisy counterfactual predictions γ̃q for q ∈ {CAF,NLD, SWE,USA}. If we specify a

prior π ({Fij}) and a measurement error model π
({

F̃ij

}
| {Fij}

)
, we can use Bayes’ rule to

find the posterior πME
(
{Fij} |

{
F̃ij

})
.

The default approach presented later in Section 4 can be applied to this setting, so we can

use the provided toolkit to obtain draws from πME
(
{Fij} |

{
F̃ij

})
. Fixing the structural

parameter at its point estimate, we can see the impact of measurement error in Table 2 and

Figure 2. For Sweden, measurement error does not have that much of an impact compared

to estimation error. For the Central African Republic the variance due to measurement error

is comparable to the variance due to estimation error, but accounting for measurement error

shifts the posterior towards zero relative to the posterior that only accounts for estimation

error. This indicates that measurement error caused a bias here. For the Netherlands and

the United States, measurement error causes much more uncertainty, as the variance of the

posterior accounting for measurement error is much larger than the variance of the posterior

accounting for estimation error. Furthermore, for the Netherlands there is a considerable bias

correction. These plots illustrate that the proposed approach automatically incorporates bias

that is caused by measurement error.

3.2.2 Relation to Measurement Error Literature

The literature on measurement error in nonlinear models is extensive, as reviewed in Hu

(2015) and Schennach (2016), and the most closely related strand of measurement error

uncertainty. Furthermore, the individual measurement error distributions can be arbitrarily correlated in
this general setup.
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Point
estimate

Only
est. error

Only
meas. error

γCAF -0.72 [-0.95, -0.13] [-0.46, -0.05]
γNLD -5.47 [-5.50, -5.37] [-7.91, -6.28]
γSWE -3.77 [-4.14, -3.54] [-4.24, -3.46]
γUSA -1.09 [-1.09, -1.03] [-1.41, -0.36]

Table 2: Uncertainty quantification for the Armington model, considering estimation error
and measurement error separately.

Figure 2: Uncertainty quantification for the Armington model, considering estimation error
and measurement error separately.

literature is that on nonseparable error models (Matzkin, 2003; Chesher, 2003; Hoderlein and

Mammen, 2007; Matzkin, 2008; Hu and Schennach, 2008; Schennach, White, and Chalak,

2012; Song, Schennach, and White, 2015). However, these results do not apply to my setting.

The key distinguishing feature of the setting in this paper is that the object of interest γ

directly depends on the correctly measured data, because the equality in Assumption 1 is

an exact statement. In contrast, in conventional measurement error settings the object of

interest is a function of the correctly measured distribution of the data, PD, rather than the

actual realized observations, D. This leads to the key distinction in Equation (2).

This difference is important because in my setting, it would not suffice to be able to

perfectly estimate the distribution PD. For example in the running example, to answer
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counterfactual questions we need the realized trade flows {Fij}, rather than the trade flow

distribution from which they are drawn. In contrast, in a conventional measurement error

setting knowing this distribution would suffice, because the estimands are functionals of

the correctly measured distribution of the data. By virtue of that, we need to account for

uncertainty about the observations themselves rather than their distribution.

3.3 Quantifying Uncertainty about γ

The object of interest is a function of the true data and the structural parameter. From

the discussion in the previous sections, it follows that we must consider estimation error,

the direct effect of mismeasurement, and the indirect effect of mismeasurement through the

estimation procedure. Our goal is to quantify uncertainty about γ when we observe D̃ by

accounting for these various sources of uncertainty.

Recall that we have obtained two different posteriors. The first one is the posterior distri-

bution of γ given the true data, πEE (γ|D), which incorporates estimation error. The second

one is the posterior of the true data given the noisy data, πME
(
D|D̃

)
, which incorporates

measurement error. We can combine these two posteriors in different ways to quantify un-

certainty about γ. Here, I will use Eπ and Prπ to denote the expectation and probability

under a posterior π, respectively.

The first approach aims to find an interval C1 to which, in posterior expectation over D,

the posterior πEE (γ|D) assigns probability 1− α:

EπME

[
PrπEE

{
γ ∈ C1|D

}
|D̃
]
≥ 1− α.

In practice, given D̃ one would generate draws from πME
(
D|D̃

)
, and for each of these draws

obtain a corresponding draw from πEE (γ|D).6 Then, one would report the α/2 and 1−α/2

quantiles of this second set of draws.7 This is summarized in Algorithm 1.

The second approach is more conservative. Suppose we again obtain draws from the

posterior πME
(
D|D̃

)
and for each draw use πEE (γ|D) to compute an interval that covers

γ with probability 1− α. The second approach then aims to find an interval C2 that covers

6If an estimator from another study is used, then πEE (θ|D) ≈ N
(
θ̃, Σ̃

)
. In that case, we can sample θb

and Db separately, which makes the algorithm much faster.
7Note that counterfactual predictions are typically derived as functions of the full system of counterfactual

equilibrium variables. Thus, whether the researcher is ultimately interested in a scalar outcome, a relative
comparison, or a global average, the mechanics of uncertainty quantification—drawing from the posterior
over the true data and parameters and solving for equilibrium—remain the same.
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Algorithm 1 Uncertainty quantification about γ = g (D, θ)

1. Input: noisy data D̃, number of bootstrap draws B, coverage level 1 − α (choose B
and α such that α/2 ·B ∈ N).

2. For b = 1, ..., B,

(a) Sample Db ∼ πME
(
D|D̃

)
.

(b) Sample θb ∼ πEE (θ|Db).

(c) Compute γb = g (Db, θb) .

3. Sort {γb}Bb=1 to obtain
{
γ(b)
}B
b=1

with γ(1) ≤ γ(2) ≤ ... ≤ γ(B).

4. Report
[
γ(α/2·B), γ((1−α/2)·B)

]
.

these 100 (1− α)% -intervals with probability 1− α:

PrπME

{
PrπEE

{
γ ∈ C2|D

}
≥ 1− α|D̃

}
≥ 1− α.

In practice, one can generate 100 (1− α)% -intervals around γ for many draws from πME
(
D|D̃

)
,

and then report the α/2 quantile of the set of lower bounds and the 1− α/2 quantile of the

set of upper bounds.

Going forward, I will focus on the less conservative interval C1, because it will turn out

that in applications the interval C2 will yield extremely wide intervals for many cases. In

Appendix G.3 I compute the interval C2 for one of my applications.8

3.3.1 Running Example: Armington Model (Continued)

Consider again the Armington model with noisily measured bilateral trade flows. Table 3 and

Figure 3 display the resulting intervals and posterior distributions for the objects of interests,

respectively. The posteriors that account for both estimation and measurement error are

compositions of the two previously plotted posterior distributions. In addition, Figure 4

presents the posterior distributions for the trade elasticity. We observe that measurement

error induces attenuation bias.

8Note that one could in principle use a single prior π on the underlying data generating process to handle
both estimation error and measurement error. I instead combine two simple priors to separately handle
estimation error and measurement error, since this leads to highly tractable procedures, albeit at the cost of
complicating the Bayesian interpretation of resulting intervals.
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Point
estimate

Only
est. error

Only
meas. error

Est. and
meas. error

γCAF -0.72 [-0.95, -0.13] [-0.46, -0.05] [-0.47, -0.03]
γNLD -5.47 [-5.50, -5.37] [-7.91, -6.28] [-8.08, -6.24]
γSWE -3.77 [-4.14, -3.54] [-4.24, -3.46] [-4.32, -3.45]
γUSA -1.09 [-1.09, -1.03] [-1.41, -0.36] [-1.44, -0.31]

Table 3: Uncertainty quantification for the Armington model, considering estimation error
and measurement error simultaneously.

Figure 3: Uncertainty quantification for the Armington model, considering estimation error
and measurement error simultaneously.

3.3.2 Relation to Dingel and Tintelnot (2020)

The most relevant paper in the literature on improving counterfactual calculations in quanti-

tative trade and spatial economics is Dingel and Tintelnot (2020), which studies calibration

procedures in granular settings. In these settings, individual idiosyncrasies do not wash out

and can cause overfitting and poor performance out-of-sample. To deal with this, Dingel and

Tintelnot (2020) proposes to, instead of the observed data, either use fitted values obtained

using a low-dimensional model or smooth the data using matrix approximation techniques.

These procedures can readily be incorporated into Algorithm 1. The resulting values {γ}Bb=1

can then be interpreted as draws from the posterior of the proposed counterfactual estimator

from Dingel and Tintelnot (2020) applied to the data without measurement error.
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Figure 4: Uncertainty quantification for the trade elasticity in the Armington model.

4 Widely Applicable Default Empirical Bayes Approach

This section proposes a default empirical Bayes (EB) approach that can be applied in many

settings. It also discusses the toolkit that accompanies the paper.

4.1 Default Prior and Measurement Error Model

Often it will be clear what a sensible prior and measurement error model are, for example

a Dirichlet prior when observing migration shares. For when this is not the case, in this

section I provide a widely applicable default approach for quantifying uncertainty about a

counterfactual prediction of interest. This default approach can be applied out-of-the-box to

many quantitative trade and spatial models, but can also easily be adapted to other settings.

It recommends default choices for the prior distribution and measurement error model, and

discusses how to calibrate both based on observed data.9

Concretely, consider the setting where we can write γ = g ({Fij} , θ), for {Fij} a set of

non-negative flows between locations. Assume we have access to an estimator θ̃ ({Fij}) with
estimated sampling variance Σ̃ ({Fij}). This setup is commonplace in quantitative trade and

9Rather than estimating the parameters of the prior distribution for the true underlying data, which
corresponds to an empirical Bayes approach, one could alternatively specify prior distributions for these
parameters, which corresponds to a hierarchical Bayes approach.
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Algorithm 2 Uncertainty quantification about γ = g (D, θ) using Dingel and Tintelnot (2020)

1. Input: noisy data D̃, number of bootstrap draws B, coverage level 1 − α (choose B
and α such that α/2 ·B ∈ N).

2. For b = 1, ..., B,

(a) Sample Db ∼ πME
(
D|D̃

)
.

(b) Sample θb ∼ πEE (θ|Db).

(c) Compute DDT
b = sDT (Db).

i. For example using a low-dimensional model: DDT
b = Ẽ [Db|X].

ii. For example using matrix approximation: Db = UΣV T ⇒ DDT
b = UΣτV

T ,
where Στ only keeps the first τ singular values to non-zero.

(d) Compute γDT
b = g

(
DDT

b , θb
)
.

3. Sort
{
γDT
b

}B
b=1

to obtain
{
γDT,(b)

}B
b=1

with γDT,(1) ≤ γDT,(2) ≤ ... ≤ γDT,(B).

4. Report
[
γDT,(α/2·B), γDT,((1−α/2)·B)

]
.

spatial models (Costinot and Rodŕıguez-Clare, 2014; Redding and Rossi-Hansberg, 2017;

Proost and Thisse, 2019).

I assume that both the prior distributions on the true flows and the measurement errors

are mixtures of a point mass at zero and a log-normal distribution, a so-called spike-and-slab

distribution (Mitchell and Beauchamp, 1988). The point mass at zero is necessary because

in both trade and spatial applications bilateral flows of zeros are common, particularly when

considering more granular data (Helpman, Melitz, and Rubinstein, 2008; Dingel and Tintel-

not, 2020). This prior and measurement error model imply that the posterior distribution of

the true flows given the noisy flows will also be a spike-and-slab distribution. This mixture

model is fairly flexible and the conjugacy is needed for computational speed. Furthermore,

I assume that the prior mean exhibits a gravity relationship, for which there is strong em-

pirical evidence (Head and Mayer, 2014; Allen and Arkolakis, 2018).10 This is summarized

in the following assumption:

10One can easily enrich this gravity prior by adding other “distance” variables such as differences in income
or productivity, or by adding dummies that indicate similarity such as contiguity or a common language, see
for example Silva and Tenreyro (2006). I experimented with this but the results do not change much.
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Assumption 2. We have

true zeros :

spurious zeros :

prior :

likelihood :

Pij ∼ Bern (pij)

Bij ∼ Bern (bij)

Fij ∼ Pij · δ0 + (1− Pij) · eN(µij ,s
2
ij)

µij = β log distij + αorig
i + αdest

j

F̃ij|Fij ∼ δ0 · I {Fij = 0}+
[
Bij · δ0 + (1−Bij) · eN(logFij ,ς

2
ij)
]
· I {Fij > 0} ,

for i, j = 1, ..., n, where distij denotes the distance between locations i and j, αorig
i is an

origin fixed effect and αdest
j is a destination fixed effect.

The probability that a bilateral trade flow is truly zero is denoted by pij, and a true

zero flow is assumed to always result in an observed zero. The probability of a spurious

zero—that is, an observed zero despite a non-zero underlying true flow—is denoted by bij.

The prior means and variances are denoted by {µij} and
{
s2ij
}
, respectively. The flow-specific

measurement error variances are denoted by
{
ς2ij
}
.

Gather the parameters in ϑ =
(
{pij} , {bij} , β,

{
αorig
i

}
,
{
αdest
i

}
,
{
s2ij
}
,
{
ς2ij
})

. It follows

that the posterior distribution for the true flow between location i and j, Fij, given its noisy

version, F̃ij is given by

Fij|F̃ij, ϑ ∼


Qij · δ0 + (1−Qij) · eN(µij ,s

2
ij)

exp

{
N
(

s2ij
s2ij+ς2ij

log F̃ij +
ς2ij

s2ij+ς2ij
µij,

(
1
s2ij

+ 1
ς2ij

)−1
)} F̃ij = 0

F̃ij > 0
, (6)

for i, j = 1, ..., n, where Qij ∼ Bern
(

pij
pij+bij(1−pij)

)
.

Conditional on being able to calibrate the parameters ϑ, one can quantify uncertainty

about γ by finding the interval C1 as described in Section 3.3. Then, a default procedure for

quantifying uncertainty about γ is summarized in Algorithm 3.

Remark 1. One can verify how reasonable the normality assumption on the prior and mea-

surement error model is by comparing the histogram of the normalized residuals log F̃ij −
{
β̃ log distij + α̃orig

i + α̃dest
j

}
√
s̃2ij + ς̃2ij


with the probability density function of a standard normal distribution. To further check
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Algorithm 3 Uncertainty quantification about γ = g ({Fij} , θ)

1. Input: noisy flows
{
F̃ij

}
, estimated prior and likelihood parameters ϑ̃, structural pa-

rameter mapping {Fij} 7→ θ̃, Σ̃, number of bootstrap draws B, coverage level 1 − α
(choose B and α such that α/2 ·B ∈ N).

2. For b = 1, ..., B,

(a) For i, j = 1, ..., n, draw Fij,b from the posterior distribution Fij|F̃ij, ϑ̃.

(b) Sample

θb ∼ N
(
θ̃
(
{Fij,b}ni,j=1

)
, Σ̃
(
{Fij,b}ni,j=1

))
.

(c) Compute γb = g
(
{Fij,b}ni,j=1 , θb

)
.

3. Sort {γb}Bb=1 to obtain
{
γ(b)
}B
b=1

with γ(1) ≤ γ(2) ≤ ... ≤ γ(B).

4. Report
[
γ(α/2·B), γ((1−α/2)·B)

]
.

the reasonableness of the gravity prior, we can look at the adjusted R-squared of the gravity

model and, following Allen and Arkolakis (2018), plot the log flows against the log distance for

positive flows, after partitioning out the origin and destination fixed effects. In Appendices

G and H I perform both these checks for my applications.

Remark 2. Specifying a prior and measurement error model is difficult and one might be

worried about misspecification. For the normal-normal model, we can use prior density-ratio

classes to find worst-case bounds on posterior quantiles over a neighborhood that contains

distributions that are not too far away from the assumed normal distribution for the prior

and measurement error model. It turns out that incorporating uncertainty around the prior

and measurement error model amounts to reporting slightly wider quantiles. The details can

be found in Appendix D.

Remark 3. In this default approach, one might worry about attenuation bias when plugging

in the shrunk data {Fij,b}ni,j=1 into the estimator θ̃. Such bias would indeed arise if the

data were shrunk toward zero or another constant (Chen, Gu, and Kwon, 2025). However,

the default approach instead shrinks toward an economically motivated gravity prior, whose

fitted values are expected to serve as a reasonable proxy for the true flows. A simulation

exercise illustrating this point, based on the running example, is provided in Appendix E.
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4.2 Empirical Bayes Step: Calibrating ϑ

The parameters in ϑ need to be calibrated. In consider two cases.

4.2.1 Baseline Case with Domain Knowledge

In the baseline case I restrict the measurement error variance and prior variance to be

constant across flows so that ς2ij = ς2 and s2ij = s2 for all i, j = 1, ..., n. Furthermore, I require

knowledge of the common measurement error variance ς2 and of the Bernoulli parameters

{pij} and {bij}.11 It then remains to estimate
(
β,
{
αorig
i

}
,
{
αdest
i

}
, s2
)
. Towards this, we

can combine the equations in Assumption 2 to find

log F̃ij ∼ N
(
β log distij + αorig

i + αdest
j , s2 + ς2

)
, F̃ij > 0.

Using maximum likelihood estimation, it follows that the prior mean parameters can be

estimated from the regression

log F̃ij = β log distij + αorig
i + αdest

j + ϕij, F̃ij > 0,

with ϕij an error term. It follows that the estimated prior means and variance are

µ̃ij = β̃ log distij + α̃orig
i + α̃dest

j , i, j = 1, ..., n (7)

s̃2 = max
{
Ṽar

(
log F̃ij − µ̃ij|F̃ij > 0

)
− ς̃2, 0

}
. (8)

Obtaining estimators for these prior means and variances is what Walters (2024) calls the

deconvolution step.

4.2.2 Mirror Trade Data

When the non-negative bilateral flows correspond to trade flows between countries, I use the

mirror trade dataset from Linsi, Burgoon, and Mügge (2023) to calibrate ϑ. This dataset

has two estimates of each bilateral trade flow, both as reported by the exporter and as by the

importer. I interpret this as observing two independent noisy observations per time period

for each bilateral trade flow. The details for the calibration can be found in Appendix F.

11In the absence of a prior on the measurement error variance, one could adopt a sensitivity analysis
approach by varying the variance to determine the minimum level of measurement error that would overturn
the counterfactual conclusion.
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I first calibrate the probabilities of true zeros {pij} and the probabilities of spurious zeros

{bij} by noting that for each bilateral trade flow we can use the time variation to identify

the probabilities of observing a certain number of zeros. I then leverage the model structure

to calibrate the measurement error variances
{
ς2ij
}
. Lastly, I calibrate the prior parameters,

which are period-specific in this case, using a similar approach as for the baseline case with

domain knowledge.

4.3 Toolkit

Accompanying the paper, I provide an easy-to-use toolkit that consists of three programs.12

The first program implements the high-level approach in Algorithm 1. It takes
(
B, D̃, πME, θ̃, Σ̃, g

)
as inputs and outputs posterior draws {γb}Bb=1. The second program implements the default

approach in Algorithm 3. It takes as inputs
(
B,
{
F̃ij

}
, ϑ̃, θ̃, Σ̃, g

)
and again outputs pos-

terior draws {γb}Bb=1. The third program, which can serve as an input to the second, uses

the mirror trade dataset of Linsi, Burgoon, and Mügge (2023) and allows the researcher to

choose countries and years for which they want to estimate the parameters of the prior and

measurement error model. This is summarized in Algorithm 4.

5 Applications

In this section I discuss the applications in Adao, Costinot, and Donaldson (2017) and Allen

and Arkolakis (2022). In both cases, accounting for estimation and measurement error leads

to substantial uncertainty around the counterfactual predictions.

5.1 Application 1: Adao, Costinot, and Donaldson (2017)

5.1.1 Model and Counterfactual Question of Interest

The empirical application of Adao, Costinot, and Donaldson (2017) investigates the effects of

China joining the WTO, the so-called China shock. Specifically, the authors examine what

would have happened to China’s welfare if China’s trade costs had stayed constant at their

1995 levels. They consider n countries and T time periods.

The counterfactual objects of interest is the change in China’s welfare, defined as the

percentage change in income that the representative agent in China would be indifferent

12The toolkit is written in MATLAB and can be found on my website, https://sandersbas.github.io/. A
version in R is available upon request.
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Algorithm 4 Toolkit

1. Program 1: General algorithm.

• Input: number of draws B, data D̃, functions D̃ 7→ Db, D 7→
(
θ̃, Σ̃

)
, (D, θ) 7→ γ.

• Output: posterior draws {γb}Bb=1.

2. Program 2: Default Approach

• Input: number of draws B, noisy flows
{
F̃ij

}
, estimated parameters ϑ̃, functions,

{Fij} 7→
(
θ̃, Σ̃

)
, ({Fij} , θ) 7→ γ.

• Output: posterior draws {γb}Bb=1, plot that compares histogram of the normalized
residuals with the probability density function of a standard normal distribution
as per Remark 1.

3. Program 3: Mirror trade data calibration.

• Input: countries I, years to produce bootstrap draws for T , years to use for
calibration Tcalibration.

• Output: noisy flows
{
F̃ij

}
, estimated parameters ϑ̃, adjusted R-squared of the

gravity model for the last year in T , plot of log flows against log distance for
positive flows, after partitioning out the origin and destination fixed effects as per
Remark 1.

about accepting instead of the counterfactual change where China’s trade costs are fixed at

their 1995 levels. The details of the model can be found in Appendix G.1.13 The key insight

is that we can express the change in China’s welfare in period t, denoted by W cf,prop
China,t, as a

function of all the bilateral trade flows in different periods {Fij,t} and the trade elasticity ε,

which is estimated by ε̃ ({Fij,t}).14 Hence, we can write

W cf,prop
China,t = gt ({Fij,t} , ε) , (9)

for t = 1, ..., T and known functions gt : RTn(n−1)
+ × R++ → R. Then, conditional on a

prior distribution for the true bilateral flows {Fij,t} and a measurement error model, we can

quantify uncertainty for
{
W cf,prop

China,t

}
.

13In Adao, Costinot, and Donaldson (2017), the authors consider two demand systems: standard CES and
“Mixed CES.” I focus on the standard CES specification.

14As in Section 3.1.1, I focus solely on measurement error in trade flows, implicitly assuming that all other
observed data are measured without error.
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5.1.2 Measurement Error Model and Prior

The default approach from Section 4 can be applied. For the empirical Bayes step, the

calibration of ϑ, we can use the mirror trade data setting from Section 4.2. Since there are

no zero flows in this application, the estimated posterior of interest is

Fij,t|F̃ij,t ∼ exp

{
N

(
s̊2ij

s̊2ij + ς̊2ij
log
(
F̃ij,t

)
+

ς̊2ij
s̊2ij + ς̊2ij

µ̃ij,t,

(
1

s̊2ij
+

1

ς̊2ij

)−1
)}

,

where
{
s̊2ij
}
,
{
ς̊2ij
}
,
{
F̃ij,t

}
and {µ̃ij,t} are all defined in Appendix F.

5.1.3 Results

Having obtained a posterior distribution for the true trade flows given the noisy trade flows,

we can now quantify uncertainty about the counterfactual predictions of interest. In Figure

5, I reproduce Figure 3 of Adao, Costinot, and Donaldson (2017), which plots the percentage

change in China’s welfare as a result of the China shock for each year in the period 1996-2011,

and include three different 95% intervals.

The first only considers estimation error and hence assumes the data are perfectly mea-

sured. It is constructed using code provided by the authors, which matches the discussion

in Section 3.1 and samples from the normal distribution with mean and variance equal to

the GMM estimator for the trade elasticity ε and its sampling variance, respectively. The

resulting intervals are small for the period before the year 2000, and then slowly become

wider. These are the intervals reported in Adao, Costinot, and Donaldson (2017).

The second region considers only measurement error and no estimation error in ε. The

resulting interval is considerably wider than the interval based solely on estimation error,

especially in the first few years. Finally, the third region combines estimation error and

measurement error and follows Algorithm 3. The resulting bounds seem to be reasonable

compositions of the bounds considering only estimation error or only measurement error. In

Appendix G.3 I perform additional analyses to check the robustness of these results.

5.2 Application 2: Allen and Arkolakis (2022)

5.2.1 Model and Counterfactual Question of Interest

The empirical application in Allen and Arkolakis (2022) aims to estimate the returns on

investment for all highway segments of the US Interstate Highway network. The authors do
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Figure 5: EB uncertainty quantification for heteroskedastic normal shocks to {logFij,t} for
the change in China’s welfare due to the China shock. The solid blue line is the estimate as
reported in Adao, Costinot, and Donaldson (2017).

so by introducing an economic geography model and calculating what happens to welfare

after a 1% improvement to all highway links. Combining these counterfactual welfare changes

with how many lane-miles must be added in order to achieve the 1% improvement, they find

the highway segments with the greatest return on investment.

This exercise only requires data on incomes and traffic flows of the n locations and

knowledge of four structural model parameters. Three of these parameters are taken from

the literature and are assumed to have no uncertainty around them. The fourth, which is the

congestion elasticity ν, is estimated using the noisily measured traffic flow data. The details

of the model can be found in Appendix H.1, but the key relation is the one that maps the

average annual daily traffic (AADT) flows {Fij} to the change in welfare W cf,prop, which is

W cf,prop = g ({Fij} , ν)

for a known function g : Rn(n−1)
+ × R → R.
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5.2.2 Measurement Error Model and Prior

For this application we can again apply the default approach from Section 4. For the empirical

Bayes step we can use the baseline case from Section 4.2. There are no zeros so we only

have to provide an estimate of the measurement error variance ς2. Musunuru and Porter

(2019) estimates that the measurement error variance of the logarithm of the average annual

daily traffic (AADT) flows, which is exactly the data that Allen and Arkolakis (2022) uses,

is between 0.05 and 0.20. To obtain a lower bound on uncertainty, I will use a uniform

measurement error variance of 0.05.

With ς̃2 = 0.05, I use Equation (8) to find a prior variance of s̃2 = 0.101. This results in

the following estimated posterior distribution for the true traffic flow between country i and

j, Fij, given its noisy version F̃ij, for i, j = 1, ..., n:

Fij|F̃ij ∼ exp
{
N
(
0.669 · log F̃ij + 0.331 · µ̃ij, 0.033

)}
,

where µ̃ij is defined in Equation (7).

5.2.3 Results

The counterfactual question of interest is which links have the highest return on investment,

and the authors of Allen and Arkolakis (2022) report the top ten links. For exposition, I will

focus my analysis on the three best performing links. Similarly to the setting in Section 5.1,

I consider scenarios with only estimation error, only measurement error, and both estimation

and measurement error.

Concerning estimation error, I follow the discussion in Section 3.1 and sample from the

normal distribution with mean and variance equal to the IV estimator for the congestion

elasticity ν and its reported squared standard error, respectively.15 Table 4 shows the 95%

equal-tailed intervals for the top three links. The intervals that consider just measurement

error or estimation error are of similar order of magnitude, and the interval that combines

them seem a sensible composition.

From a policy perspective it is of interest whether the ranking between these links can

change due to estimation and measurement error. Therefore, Table 5 shows the 95% intervals

15Here, I follow the inference method used by the authors of Allen and Arkolakis (2022) and use the
clustered standard error. However, as discussed in Sanders (2025), clustering at the edge level tends to
understate uncertainty relative to approaches that account for dyadic dependence in the data, and therefore
yields narrower confidence intervals.
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Point
estimate

Only
est. error

Only
meas. error

Est. and
meas. error

Link 1 10.43 [8.33, 11.47] [8.69, 14.15] [7.86, 14.89]
Link 2 9.54 [7.02, 10.76] [7.31, 10.83] [6.60, 11.32]
Link 3 7.31 [5.05, 8.57] [6.78, 8.18] [5.30, 8.90]

Table 4: EB uncertainty quantification for the three links from Allen and Arkolakis (2022)
with the highest return on investment. Link 1 is Kingsport-Bristol (TN-VA) to Johnson City
(TN), link 2 is Greensboro-High Point (NC) to Winston-Salem (NC) and link 3 is Rochester
(NY) to Batavia (NY).

for the difference between link 1 and link 2, and the difference between link 2 and link 3.16

It follows that the rankings are generally robust against estimation error and measurement

error. Additional discussion and analyses can be found in Appendices H.2 and H.3.

Point
estimate

Only
est. error

Only
meas. error

Est. and
meas. error

Link 1-Link 2 0.89 [0.61, 1.29] [0.38, 5.39] [0.38, 5.66]
Link 2-Link 3 2.23 [1.96, 2.25] [-0.05, 3.27] [0.02, 3.49]

Table 5: EB uncertainty quantification for the differences between the three links from Allen
and Arkolakis (2022) with the highest return on investment. Link 1 is Kingsport-Bristol
(TN-VA) to Johnson City (TN), link 2 is Greensboro-High Point (NC) to Winston-Salem
(NC) and link 3 is Rochester (NY) to Batavia (NY).

6 Conclusion

In this paper, I provide an econometric framework to examine the effect of parameter un-

certainty and measurement error for an important class of quantitative trade and spatial

models. This setting departs from conventional measurement error models because the ob-

ject of interest depends directly on the correctly measured data realizations, rather than on

their distribution. I adopt a Bayesian approach to quantify uncertainty in counterfactual pre-

dictions, explicitly incorporating both estimation error and measurement error. I apply the

framework to the settings in Adao, Costinot, and Donaldson (2017) and Allen and Arkolakis

(2022), and find substantial uncertainty surrounding key economic quantities in both cases.

These findings highlight the importance of accounting for measurement and estimation error

in counterfactual analysis.

16This simple exercise is intended purely for exposition. For a more formal treatment of inference on ranks,
see Mogstad et al. (2024).
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Appendix

A Finding g in Two Leading Classes of Models

This section informally discusses how to find the function g for two leading classes of models,

namely invertible models and exact hat algebra models. We are generally interested in the

effect of proportional changes to the fundamentals, X ∈ X ⊆ RdX . Denote these proportional

changes by Xcf,prop ∈ RdX . In particular, we want to find the corresponding proportional

changes to the observed data, Dcf,prop ∈ RdD . Our scalar prediction of interest, γ, will then

be some transformation of the vector of change variables Dcf,prop. That is, we consider a

mapping of the form

Xcf,prop, D, θ,Dcf,prop 7→ γ.

Given such a structure, it suffices to focus attention on the mapping

Xcf,prop, D, θ 7→ Dcf,prop. (10)

A.1 Invertible Models

Redding and Rossi-Hansberg (2017) define a model to be invertible if there exists a one-to-

one mapping from the observed data and structural parameter to the fundamentals. Once

we have obtained the levels of the fundamentals, we can apply the proportional change of

interest and find the corresponding proportional changes to the observed data. The high-level

steps of this approach are:

1. “Back out” the levels of the fundamentals X using the observed data D and the struc-

tural parameter θ.

2. Find the counterfactual levels of the data D � Dcf,prop from the counterfactual levels

of the fundamentals X � Xcf,prop and the structural parameter θ, where � denotes

element-wise multiplication.17

3. Find counterfactual changes variables Dcf,prop using the counterfactual levels of the

data D � Dcf,prop and the baseline levels of the data D.

Existence of the mapping in Equation (10) follows.

17Here, assume that the equilibrium conditions are unique, so that for each (X, θ) there exists a unique D
(possibly up to a multiplicative constant).
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A.2 Exact Hat Algebra Models

Exact hat algebra models (Costinot and Rodŕıguez-Clare, 2014) are models for which the

mapping in Equation (10) holds “directly”, without the intermediary step of backing out

the levels of the fundamentals. The Armington model presented in the running example in

Section 2.1.1 is one such exact hat algebra model.

B Details for Armington Model

B.1 Derivation of System of Equations for {Y prop
i }

Rearranging Equation (3) and recalling that λij = Fij/Ej yields:

λij =
(τijYi)

−ε χij∑
k (τkjYk)

−ε χkj

, i, j = 1, ..., n. (11)

Next, plugging in Equations (4) and (11) into Equation (3) yields

Fij = λij (1 + κj)Yj, i, j = 1, ..., n.

If we sum over j, we can use Yi =
∑n

ℓ=1 Fiℓ to find

Yi =
n∑

j=1

λij (1 + κj)Yj, i = 1, ..., n. (12)

In the counterfactual equilibrium, Equation (12) should still hold. Because κi is constant

across equilibria for all i, this results in:

Y cf,prop
i Yi =

n∑
j=1

λcf,prop
ij λij (1 + κj)Y

cf,prop
j Yj, i = 1, ..., n. (13)
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Similarly, Equation (11) should still hold in equilibrium. Using that χij is constant across

equilibria for all i, j, we find

λcf,prop
ij =

1

λij

(
τ cf,propij τijY

cf,prop
i Yi

)−ε

χij∑
k

(
τ cf,propkj τkjY

cf,prop
k Yk

)−ε

χkj

=
1

λij

(
τ cf,propij Y cf,prop

i

)−ε (τijYi)
−ε

χij∑
ℓ(τℓjYℓ)

−ε
χℓj∑

k

(
τ cf,propkj Y cf,prop

k

)−ε (τkjYk)
−ε

χkj∑
ℓ(τℓjYℓ)

−ε
χℓj

=

(
τ cf,propij Y cf,prop

i

)−ε

∑
k λkj

(
τ cf,propkj Y cf,prop

k

)−ε , i, j = 1, ..., n. (14)

Finally, combining Equations (13) and (14) yields the desired expression

Y cf,prop
i Yi =

∑
j

(
τ cf,propij Y cf,prop

i

)−ε

∑
k λkj

(
τ cf,propkj Y cf,prop

k

)−ελij (1 + κj)Y
cf,prop
j Yj, i = 1, ..., n.

B.2 Results for Other Countries

Figure 6 reproduces Figure 3 for all 76 countries in the sample.

B.3 Calibration Procedure and Computational Details

The default approach from Section 4 can be applied. For the empirical Bayes step, the

calibration of ϑ, we can use the mirror trade data setting from Section 4.2.

To construct {Fij}, I use the mirror trade data for bilateral flows {Fij}i ̸=j and the trade

flow data from Waugh (2010) for own-country flows {Fii}. Because the mirror trade data

report zero bilateral trade flows for Belgium, I exclude it from the analysis, resulting in a

sample of 76 countries. For the estimation step, I use estimates of trade costs from Waugh

(2010), which are available for 42 of these 76 countries.

C Discussion on πEE (θ|D) ≈ N
(
θ̃ (D) , Σ̃ (D)

)
Suppose θ is estimated using an extremum estimator, so that

θ̃ = argmin
θ

Qn (θ) ,
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with corresponding asymptotic distribution

n−α
(
θ̃ − θ

)
d→ N (0,Ω) ,

for some rate α. Define the quasi-posterior

πQ (θ|D) ≡ exp (Qn (θ))∫
Θ
exp (Qn (θ)) dθ

.

Under regularity conditions, by results in Chernozhukov and Hong (2003), we know that

draws from this quasi-posterior will eventually behave as draws from N
(
θ̃,Ω

)
.

In the special case that Qn (θ) corresponds to a likelihood, the quasi-posterior is an actual

posterior distribution. However, in quantitative trade and spatial models, the most common

estimation procedure is GMM, where there are some moment conditions

E [mi (D, θ)] = 0,

for i = 1, ...,M . These allow us to estimate θ as

θ̃ = argmin
θ

{
1

n

M∑
i=1

mi (D, θ)

}′

Wn

{
1

n

M∑
i=1

mi (D, θ)

}
,

for Wn a consistent estimator of the efficient weight matrix. In this case, we can still ar-

gue approximate normality of the quasi-posterior πQ (θ|D), but we cannot interpret it as a

posterior distribution.

D Misspecification of the Measurement Error Model and Prior

We are interested in the potential effects of misspecification of the measurement error model

or prior. Specifically, focusing on the widely applicable default approach from Section 4, we

would like to know how the quantiles of the posterior distribution of the counterfactual object

of interest given the noisy flows change when the assumptions of a normal measurement error

model or a normal prior do not hold. Suppose for exposition that there are no zeros and

that the structural parameter θ is known, so that we can obtain the posterior distribution

π
(
γ|
{
log F̃ij

})
.
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D.1 Measurement Error Model

Let L ({logFij}) = π
({

log F̃ij

}
| {logFij}

)
denote the likelihood function of the noisy log

flows
{
log F̃ij

}
given the true log flows {logFij}. For a given c ≥ 1, define a density-ratio

class of distributions to be the set of all conditional distributions for
{
log F̃ij

}
with pdf p

such that

p ∈ Rc =

{
p ∈ P :

1

c
· L (x) ≤ p (x) ≤ c · L (x) ∀x ∈ Rn(n+1)

}
,

for P the set of all pdfs.

For uncertainty quantification, we are interested in the quantiles of the posterior distri-

bution πME
(
h (log {Fij}) |

{
log F̃ij

})
for a generic function h (·). Denote the α-th posterior

quantile based on likelihood p by QπME ,p,h (α).

Proposition 1. We have:

sup
p∈Rc

QπME ,p,h (α) = QπME ,L,h

(
αc2

1− α + αc2

)
inf
p∈Rc

QπME ,p,h (α) = QπME ,L,h

(
α

α + (1− α) c2

)
.

So instead of reporting the interval

[
QπME ,L,h (α/2) , QπME ,L,h (1− α/2)

]
one could report the robust interval[

QπME ,L,h

(
α

α + (2− α) c2

)
, QπME ,L,h

(
(2− α) c2

α + (2− α) c2

)]
.

For example for α = 0.05 and c = 1.5, we would consider the 1.1%-quantile and the 98.9%-

quantile, instead of the 2.5%-quantile and the 97.5%-quantile, respectively.

The result in Proposition 1 follows from noting that

α =

∫ q

−∞
π (h (x) |x̃) dh (x) =

∫
x∈h−1([−∞,q])

π (x|x̃) dx

⇒
∫
x∈h−1([−∞,q])

p (x) π (x) dx =
α

1− α

∫
x ̸∈h−1([−∞,q])

p (x) π (x) dx.

Focusing on the upper bound, it follows that we want to choose p (x) on the left-hand side
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as small as possible and p (x) on the right-hand side as large as possible for all x:

1

c

∫
x∈h−1([−∞,q∗sup])

L (x) π (x) dx =
α

1− α
c

∫
x ̸∈h−1([−∞,q∗sup])

L (x) π (x) dx

⇒
∫ q∗sup

−∞
πME

(
h (x) |

{
log F̃ij

})
dh (x) =

αc2

1− α + αc2
.

D.2 Prior

Note that the likelihood L and the prior π enter the posterior in exactly the same way, so

we can interpret the procedure in the previous subsection also as sensitivity analysis with

respect to the prior.

E Attenuation Bias

Consider a simplified simulation setup based on the running example, where for i, j = 1, ..., n

and i ̸= j, the data generating process is

log τij = ρ · log distij
logFij ∼ N

(
−ε · log τij, s2

)
log F̃ij ∼ N

(
logFij, ς

2
)
.

If as a prior π (logFij) we use the gravity prior

N
(
β · log distij, s2

)
,

the relevant posterior π
(
logFij| log F̃ij

)
equals

N

 s2

s2 + ς2
log F̃ij +

ς2

s2 + ς2

C̃ov
(
log distij, log F̃ij

)
Ṽar (log distij)

· log distij,
(

1

s2
+

1

ς2

)−1
 .

Assuming known variances s2 and ς2, we can obtain draws {logFij,b}Bb=1 and find the median

posterior bias

Med


−

C̃ov
(
log τij, log F̃ij,b

)
Ṽar (log τij)

− ε


B

b=1

 .
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We can repeat this exercise M times. Figure 7 plots the histogram of median posterior biases

across these Monte Carlo draws, using M = 105, B = 1000, ρ = 0.5, distij = |i− j|, ε = 5

and s = ς = 0.1. We observe that there is no attenuation bias because we are shrinking

towards the economically motivated gravity prior, and the fitted values are a good proxy for

the true flows.

Figure 7: Posterior bias across Monte Carlo draws.

F Calibration with Mirror Trade Data

F.1 Model

I use the mirror trade dataset from Linsi, Burgoon, and Mügge (2023). This dataset has

two estimates of each bilateral trade flow, both as reported by the exporter and as by the

importer. I interpret this as observing two independent noisy observations per time period
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for each bilateral trade flow:

{{
F̃ 1
ij,t, F̃

2
ij,t

}T

t=1

}
i ̸=j

. It is helpful to rewrite the model:



true zeros :

spurious zeros :

prior :

likelihood :

Pij,t ∼ Bern (pij)

B1
ij,t, B

2
ij,t ∼ Bern (bij)

Fij,t ∼ Pij,t · δ0 + (1− Pij,t) · eµij,t · eηij,t

µij,t = βt log distij + αorig
i,t + αdest

j,t

ηij,t ∼ N
(
0, s2ij

)
F̃ 1
ij,t|Fij,t ∼ δ0 · I {Fij,t = 0}+

[
B1

ij,t · δ0 +
(
1−B1

ij,t

)
· Fij,t · eε

1
ij,t

]
· I {Fij,t > 0}

F̃ 2
ij,t|Fij,t ∼ δ0 · I {Fij,t = 0}+

[
B2

ij,t · δ0 +
(
1−B2

ij,t

)
· Fij,t · eε

2
ij,t

]
· I {Fij,t > 0}

ε1ij,t, ε
2
ij,t ∼ N

(
0, ς2ij

)
.

F.2 Bernoulli Parameters

For a given bilateral trade flow from i to j in period t, we can compute the ex-ante probability

of observing a certain number of zeros:

Pr {two observed zeros} = pij + (1− pij) · b2ij
Pr {one observed zero} = 2 · (1− pij) · (1− bij) · bij,

P r {no observed zeros} = (1− pij) · (1− bij)
2 .

We can use the time variation to identify the probabilities on the left-hand side:

z̃ij,2 =
1

T

T∑
t=1

I
{
F̃ 1
ij,t = 0, F̃ 2

ij,t = 0
}

z̃ij,1 =
1

T

T∑
t=1

I
{
F̃ 1
ij,t = 0, F̃ 2

ij,t > 0 or F̃ 1
ij,t > 0, F̃ 2

ij,t = 0
}

z̃ij,0 =
1

T

T∑
t=1

I
{
F̃ 1
ij,t > 0, F̃ 2

ij,t > 0
}
.
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When z̃ij,2, z̃ij,1, z̃ij,0 ∈ (0, 1), we can back out the estimated probability of a true zero p̃ij

and the estimated probability of a spurious zero b̃ij by solving

z̃ij,2 = p̃ij + (1− p̃ij) · b̃2ij
z̃ij,1 = 2 · (1− p̃ij) ·

(
1− b̃ij

)
· b̃ij

z̃ij,0 = (1− p̃ij) ·
(
1− b̃ij

)2
.

The solutions are

p̃ij = max

{
1− (z̃ij,1 + 2z̃ij,0)

2

4z̃ij,0
, 0

}
, b̃ij =

z̃ij,1
z̃ij,1 + 2z̃ij,0

.

I separately consider the possible cases where the estimated probabilities (z̃ij,2, z̃ij,1, z̃ij,0) are

not all strictly between 0 and 1:

1. z̃ij,2 = 1, z̃ij,1 = 0, z̃ij,0 = 0: In this case we observe only zeros so I set the estimated

probability of a true zero p̃ij to 1, which makes the estimated probability of a spurious

zero b̃ij irrelevant.

2. z̃ij,2 = 0, z̃ij,1 = 1, z̃ij,0 = 0: In this case one country always reports a positive flow and

the other reports a zero flow. In this case I set the estimated probability of a true zero

p̃ij to 0, and the estimated probability of a spurious zero b̃ij to 0.5.

3. z̃ij,2 = 0, z̃ij,1 = 0, z̃ij,0 = 1: In this case all reported flows are positive, so I set both

the estimated probability of a true zero p̃ij and the estimated probability of a spurious

zero b̃ij to 0.

4. z̃ij,2 ∈ (0, 1) , z̃ij,1 ∈ (0, 1) , z̃ij,0 = 0: In this case there are no years with two reported

positive flows. In this case I set the estimated probability of a true zero p̃ij to z̃ij,2, and

the estimated probability of a spurious zero b̃ij to z̃ij,1.

5. z̃ij,2 ∈ (0, 1) , z̃ij,1 = 0, z̃ij,0 ∈ (0, 1): In this case some years have two zeros and other

years have two positive flows. In this case I set the estimated probability of a true zero

p̃ij to z̃ij,2, and the estimated probability of a spurious zero b̃ij to 0.

6. z̃ij,2 = 0, z̃ij,1 ∈ (0, 1) , z̃ij,0 ∈ (0, 1): In this case there are no reported double zeros

so I set the estimated probability of a true zero p̃ij to 0. I then solve the system of

38



equations:

z̃ij,1 = P̃ r {one observed zero|no spurious zeros, observed zeros < 2}

=
2b̃ij

(
1− b̃ij

)
2b̃ij

(
1− b̃ij

)
+
(
1− b̃ij

)2 =
2b̃ij

1 + b̃ij

z̃ij,0 = P̃ r {no observed zeros|no spurious zeros, observed zeros < 2}

=

(
1− b̃ij

)2
2b̃ij

(
1− b̃ij

)
+
(
1− b̃ij

)2 =
1− b̃ij

1 + b̃ij
,

and find

b̃ij =
z̃ij,1

2− z̃ij,1
.

F.3 Measurement Error Variances

We can combine the model equations to find:

log F̃ 1
ij,t = βt log distij + αorig

i,t + αdest
j,t + ηij,t + ε1ij,t, F̃ 1

ij,t > 0

log F̃ 2
ij,t = βt log distij + αorig

i,t + αdest
j,t + ηij,t + ε2ij,t, F̃ 2

ij,t > 0,

for i, j = 1, ..., n and t = 1, ..., T . Subtracting these two equations yields

log F̃ 1
ij,t − log F̃ 2

ij,t = ε1ij,t − ε2ij,t ∼ N
(
0, 2ς2ij

)
, F̃ 1

ij,t > 0, F̃ 2
ij,t > 0,

for i, j = 1, ..., n and t = 1, ..., T . This suggests the estimator

ς̃2ij =
I
{∑T

t=1 I
{
F̃ 1
ij,t > 0, F̃ 2

ij,t > 0
}
> 0
}

∑T
t=1 I

{
F̃ 1
ij,t > 0, F̃ 2

ij,t > 0
} 1

2

T∑
t=1

I
{
F̃ 1
ij,t > 0, F̃ 2

ij,t > 0
}
·
(
log F̃ 1

ij,t − log F̃ 2
ij,t

)2
for i, j = 1, ..., n. So note that county-pairs with no entries with two positive flows will have

an estimated measurement error variance of 0. Note that the estimator is unbiased even with

access to one period of mirror trade data (assuming both flows are non-negative). Obtaining

estimators for the measurement error variances is what Walters (2024) calls the estimation

step.
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F.4 Prior Means

For the calibration of
(
{βt} ,

{
αexp
i,t

}
,
{
αimp
j,t

})
, I use F̃ij,t = F̃ 1

ij,t. We then know that

log F̃ij,t ∼ N
(
βt log distij + αorig

i,t + αdest
j,t , s2ij + ς2ij

)
, F̃ij,t > 0, (15)

for i, j = 1, ..., n and t = 1, ..., T . Using maximum likelihood estimation, it follows that the

prior mean parameters can be estimated from the within-period regressions

log F̃ij,t = βt log distij + αorig
i,t + αdest

j,t + ζij,t, for F̃ij,t > 0, (16)

for t = 1, ..., T , with ζij,t an error term. The estimated prior means are

µ̃ij,t =
(
β̃t log distij + α̃orig

i,t + α̃dest
j,t

)
· I
{
F̃ij,t > 0

}
+

I
{∑T

s=1 I
{
F̃ij,s > 0

}
> 0
}

∑T
s=1 I

{
F̃ij,s > 0

} ·
T∑

s=1

{
β̃s log distij + α̃orig

i,s + α̃dest
j,s

}
·,

for i, j = 1, ..., n and t = 1, ..., T . Note that for zero flows, the prior mean is imputed using

an across-period average, and µ̃ij,t is only zero if F̃ij,t is zero in all time periods for that

country pair.

F.5 Prior Variances

From Equation (15) it follows that the posterior variances can be estimated by

s̃2ij = max
{
Ṽar

(
log F̃ij,t − µ̃ij,t|F̃ij,t > 0

)
− ς̃2ij, 0

}
,

for i, j = 1, ..., n. Here, I again impute across periods for zero flows. Obtaining estimators

for the prior means and variances is what Walters (2024) calls the deconvolution step.

F.6 Shrinking Variance Estimates

To leverage country information and the fact that importers and exporters can differ in their

reliability, and reduce the variability for
{
ς̃2ij
}
and

{
s̃2ij
}
, I fit the models

ς̃2ij = eκ
ς,orig
i +κς,dest

j +uς
ij and s̃2ij = eκ

s,orig
i +κs,dest

j +us
ij , (17)
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for i, j = 1, ..., n, with κς,orig
i , κς,dest

j , κs,orig
i and κs,dest

j country-origin and country-destination

fixed effects and uς
ij and us

ij error terms. Then, rather than using ς̃2ij and s̃2ij I will use the

fitted values ς̊2ij = eκ̃
ς,orig
i +κ̃ς,dest

j and s̊2ij = eκ̃
s,orig
i +κ̃s,dest

j .

F.7 Posterior Draws

It follows that the estimated posterior distribution for the true flow between location i and

j, Fij,t, given its noisy version, F̃ij,t is given by

Fij,t|F̃ij,t, ϑ̃ ∼


Qij · δ0 + (1−Qij) · eN(µ̃ij,t ,̊s

2
ij)

exp

{
N
(

s̊2ij
s̊2ij+ς̊2ij

log F̃ij,t +
ς̊2ij

s̊2ij+ς̊2ij
µ̃ij,t,

(
1
s̊2ij

+ 1
ς̊2ij

)−1
)} F̃ij = 0

F̃ij > 0
, (18)

for i, j = 1, ..., n and t = 1, ..., T , where Qij ∼ Bern
(

p̃ij

p̃ij+b̃ij(1−p̃ij)

)
.

F.8 Diagnostics

From Equation (15), one can verify how reasonable the normality assumption on the prior

and measurement error model is by comparing the histogram of the normalized residuals log F̃ij,t − µ̃ij,t√
s̊2ij + ς̊2ij


i,j,t, F̃ij,t>0

with the probability density function of a standard normal distribution. To further check

the reasonableness of the gravity prior, we can look at the adjusted R-squared of the gravity

regressions in Equation (16), and, following Allen and Arkolakis (2018), plot the log flows

against the log distance, after partitioning out the origin and destination fixed effects.

F.9 Computational Implementation Details

In the case where for all years one country reports only positive flows and the other country

reports only NAs, I replace the NAs by the positive flows. After this initial replacement

step, I replace the remaining NAs by zeros.
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G Details for Application Adao, Costinot, and Donaldson

(2017)

G.1 Model Details

In the empirical application of Adao, Costinot, and Donaldson (2017), the authors investigate

the effects of China joining the WTO, the so-called China shock. Going forward, Qi,t denotes

the factor endowment of country i in period t, τij,t denotes the trade cost between country i

and j in period t, λij,t denotes the expenditure share from country i in country j in period t,

Yi,t denotes the income of country i in period t, and Pi,t denotes the factor price of country

i in period t. Furthermore, ρi,t denotes the difference between aggregated gross expenditure

and gross production in country i in period t, which is assumed to stay constant for different

counterfactuals. Lastly, ε denotes the trade elasticity and χi (·) denotes the factor demand

system of country i.

In Adao, Costinot, and Donaldson (2017), two demand systems are considered, normal

CES and “Mixed CES”. I will focus on normal CES, so that

λij,t = χi ({δij,t}) =
exp {δij,t}

1 +
∑

ℓ>1 exp {δiℓ,t}
,

for δij,t some transformation of factor prices. The function χ−1
i (·) then maps the observed

expenditures shares to values of this transformation. The structural parameter ε is estimated

by assuming a model on the unobserved trade costs {τij,t}, and is estimated using GMM with

as an input the expenditure shares {λij,t}.
The counterfactual question of interest is what the change in China’s welfare is due to

joining the WTO. This question is modeled by choosing the counterfactual proportional

changes in trade costs,
{
τ cf,propij,t

}
, such that Chinese trade costs are brought back to their

1995 levels:

τ cf,propij,t =
τij,95
τij,t

, if i or j is China,

τ cf,propij,t = 1, otherwise.

Welfare is then defined as the percentage change in income that the representative agent

in China would be indifferent about accepting instead of the counterfactual change in trade

costs from {τij,t} to
{
τ cf,propij,t τij,t

}
. These changes in China’s welfare

{
W cf,prop

China,t

}
can be
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obtained from first solving for
{
P cf,prop
i,t

}
using the system of equations

∑
j

exp
{
χ−1
i ({λij,t})− ε log

(
P cf,prop
i,t τ cf,propij,t

)}
1 +

∑
ℓ>1 exp

{
χ−1
ℓ ({λij,t})− ε log

(
P cf,prop
ℓ,t τ cf,propℓj,t

)} {P cf,prop
j,t Yj,t + ρj,t

}
= P cf,prop

i,t Yi,t,

and then using

W cf,prop
i,t = 100 ·

P cf,prop
i,t

∑
ℓ

[
χ−1
ℓ ({λij,t})

]−ε∑
ℓ

[
P cf,prop
ℓ,t τ cf,propiℓ,t ({λij,t})

]−ε − 1

 .

G.2 Calibration Procedure and Computational Details

The default approach from Section 4 can be applied. For the empirical Bayes step, the

calibration of ϑ, we can use the mirror trade data setting from Section 4.2.

In preprocessing the mirror trade dataset from Linsi, Burgoon, and Mügge (2023) I made

some additional assumptions. Firstly, I only consider data from the period that is considered

in Adao, Costinot, and Donaldson (2017). Secondly, I only consider trade flows between

countries that the authors of that paper consider. This amounts to aggregating Belgium

and Luxembourg, and Estonia and Latvia. All the remaining countries I aggregate to “Rest

of World”. Thirdly, when only one of the mirror trade flows is reported, I interpret this as

zero measurement error by setting the unknown mirror trade flow equal to the observed one.

Relatedly, when both mirror trade flows are not reported, I interpret this as there being no

trade, and when one trade flow is zero and the other is substantially larger than zero, I set

the zero trade flow equal to the non-zero one. Lastly, I follow Adao, Costinot, and Donaldson

(2017) by setting zero trade flows to 0.0025 (million USD). There are however only a handful

of zeros due to the aggregation into “Rest of World”.

When estimating the prior distribution of the true underlying trade flows, I use the

distance dataset from Mayer and Zignago (2011). For the distance between countries and

the “Rest of World”, I take the average of the distances to all other countries that are

considered in Adao, Costinot, and Donaldson (2017).

An important consideration is that there is a substantial difference between the trade flows

used in Adao, Costinot, and Donaldson (2017), which come from the World Input Output

Dataset (WIOD), and the mirror trade flows from Linsi, Burgoon, and Mügge (2023), which

are based on the IMF Direction of Trade Statistics dataset. To overcome this discrepancy,

I scale the mirror trade data to make them comparable to the trade flows from WIOD. I

set F̃ 1,ACD
ij,t = F̃ACD

ij,t and F̃ 2,ACD
ij,t = F̃ 2

ij,t · F̃ACD
ij,t /F̃ 1

ij,t, for F̃ACD
ij,t the noisy trade flow as used
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in Adao, Costinot, and Donaldson (2017). There were also some trade flows in the mirror

trade dataset that reported zeros but had a large trade flow in the WIOD. For these trade

flows, I set the zero mirror trade data entries equal to the positive WIOD entry.

For the computational implementation of the bounds that incorporate both estimation

error and measurement error, I use the code provided by the authors of Adao, Costinot,

and Donaldson (2017) to account for estimation error. For some draws of the structural

parameter the code was not converging. I opted to ignore these draws when constructing

the bounds.

G.3 Supplementary Analyses

G.3.1 Winsorized Measurement Error Variances

The distribution of measurement error variances has a heavy right tail, with the noisiest

bilateral trade flow the one from Mexico to Australia with a measurement error variance of

1.42. One might be worried that this heavy tail drives the sensitivity to mismeasurement.

Figure 8 replicates Figure 5 but now winsorizing the measurement error variances at 0.2,

but keeping the posterior variances constant. This amounts to winsorizing 27% of the trade

flows. There are no substantial differences between Figures 8 and 5.

Figure 8: EB uncertainty quantification for winsorized heteroskedastic normal shocks to
{logFij,t} for the change in China’s welfare due to the China shock. The solid blue line is
the estimate as reported in Adao, Costinot, and Donaldson (2017).
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G.3.2 Using C2 instead of C1

Following the discussion in 3.3, Figure 9 plots the interval C2 for the change in China’s

welfare. Indeed, the interval that combines estimation and measurement error becomes

extremely wide.

Figure 9: EB uncertainty quantification for heteroskedastic normal shocks to {logFij,t} for
the change in China’s welfare due to the China shock using C2. The solid blue line is the
estimate as reported in Adao, Costinot, and Donaldson (2017).

G.3.3 Testing Normality Assumption and Gravity Model for the Prior

As outlined in Remark 1, we can check how reasonable the normality assumption is by

comparing the histogram of the normalized residuals with the probability density function

of a standardized normal distribution. The result can be found in Figure 10. It follows that

the normality assumption seems reasonable.

Concerning the gravity model, restricting attention to the year 2011, the regression for

the prior mean in Equation (16) has an adjusted R-squared of 0.95, and the coefficient on

log distance is -0.277 with a t-statistic of 3.346. Furthermore, Figure 11 follows Allen and

Arkolakis (2018) by plotting a linear and nonparametric fit of log trade flows against log

distance, after partitioning out the origin and destination fixed effects. Together, the high

adjusted R-squared and the good performance of the linear fit imply that the gravity model

is a reasonable choice for this setting.
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Figure 10: Plot to compare the normalized residuals with the probability density function of
a standardized normal distribution to check whether the normality assumption for the prior
is reasonable for Adao, Costinot, and Donaldson (2017).

H Details for Application Allen and Arkolakis (2022)

H.1 Model Details

In the empirical application of Allen and Arkolakis (2022), the authors investigate what

the returns on investment are of all the highway segments of the US Interstate Highway

network. Going forward, L̄ denotes aggregate labor endowment, Ȳ denotes total income in

the economy, Qi denotes the productivity of location i, Ai captures the level of amenities

in location i, τij denotes the travel cost between locations i and j, Fij denotes the traffic

flow between locations i and j, yi denotes total income of location i as a share of the total

income in the economy, ℓi denotes the total labor in location i as a share of the aggregate

labor endowment, and χ captures the (inverse of) the welfare of the economy. The parameter

vector is θ = (α, β, γ, ν), where α and β control the strength of the productivity and amenity

externalities respectively, γ is the shape parameter of the Fréchet distributed idiosyncratic

productivity shocks, and ν governs the strength of traffic congestion.

It is shown in the paper that we can uniquely recover
({

ycf,propi

}
,
{
ℓcf,propi

}
, χcf,prop

)
given any change in the underlying infrastructure network

{
τ cf,propij

}
and baseline economic
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Figure 11: Plot that follows Allen and Arkolakis (2018) to check whether the gravity model
is reasonable for log trade flows in 2011 from Adao, Costinot, and Donaldson (2017).

activity
{
yiȲ
}
, using the system of equations

(
ycf,propi

) 1+ν+γ
1+ν

(
ℓcf,propi

)−θ(1+α+ν(α+β))
1+ν

= χcf,prop

(
yiȲ

yiȲ +
∑

k Fik

)(
ycf,propi

) 1+ν+γ
1+ν

(
ℓcf,propi

) γ(β−1)
1+ν

+
∑
j

(
Fij

yiȲ +
∑

k Fik

)(
τ cf,propij

) −γ
1+ν
(
ycf,propj

) 1+γ
1+ν
(
ℓcf,propj

)−γ(1+α)
1+ν

(
ycf,propi

)−γ+ν
1+ν

(
ℓcf,propi

) γ(1−β−ν(α+β))
1+ν

= χcf,prop

(
yiȲ

yiȲ +
∑

k Fki

)(
ycf,propi

)−γ+ν
1+ν

(
ℓcf,propi

) γ(α+1)
1+ν

+
∑
j

(
Fji

yiȲ +
∑

k Fki

)(
τ cf,propij

) −γ
1+ν
(
ycf,propj

) −γ
1+ν
(
ℓcf,propj

) γ(1−β)
1+ν

.

Having obtained χcf,prop, the proportional counterfactual change in welfare is then calculated

using

W cf,prop =

(
χcf,prop

)1/γ
L̄α+β

.
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H.2 Calibration Procedure and Computational Details

The default approach from Section 4 can be applied. For the empirical Bayes step, the

calibration of ϑ, we can use the baseline case with domain knowledge from Section 4.2.

When I run the code from Allen and Arkolakis (2022), the returns of investment for the

links systematically differ slightly from the ones in the paper. I scale my estimates so that

the unperturbed estimates align with the ones in the paper.

H.3 Supplementary Analyses

H.3.1 Probability that Rankings are Reversed

We can learn more from the posterior distributions than just intervals. It might be of interest

what the expected probability is that the ranking of the three links are reversed. When we

consider only estimation error, this expected probability that the ranking between link 1

and link 2 is reversed and the expected probability that the ranking between link 2 and link

3 is reversed both equal 0.000. When we consider only measurement error these expected

probabilities change to 0.000 and 0.030 respectively. When we consider both measurement

error and estimation error simultaneously, the expected probabilities equal 0.000 and 0.022,

respectively.

H.3.2 Testing Normality Assumption and Gravity Model for the Prior

We can again check the reasonableness of the normality assumption as per Remark 1. The re-

sult can be found in Figure 12, and it follows that the normality assumption is less reasonable

compared to the setting of Adao, Costinot, and Donaldson (2017).

Concerning the gravity model, the regression for the prior mean in Equation (7) has an

adjusted R-squared of 0.9995, and the coefficient on log distance is 1.003 with a t-statistic

of 1138. It follows that log distance is an important driver of log traffic flows, but not in

a negative way as is common in gravity models. Furthermore, Figure 13 follows Allen and

Arkolakis (2018) by plotting a linear and nonparametric fit of log traffic flows against log

distance, after partitioning out the origin and destination fixed effects. Together, the high

adjusted R-squared and the good performance of the linear fit imply that the gravity model

is a reasonable choice for this setting.
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Figure 12: Plot to compare the normalized residuals with the probability density function of
a standardized normal distribution to check whether the normality assumption for the prior
is reasonable for Allen and Arkolakis (2022).

Figure 13: Plot that follows Allen and Arkolakis (2018) to check whether the gravity model
is reasonable for log traffic flows from Allen and Arkolakis (2022).
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