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Abstract

Counterfactuals in quantitative trade and spatial models are functions of the current
state of the world and the model parameters. Common practice treats the current state
of the world as perfectly observed, but there is good reason to believe that it is measured
with error. This paper provides tools for quantifying uncertainty about counterfactuals
when the current state of the world is measured with error. I recommend an empirical
Bayes approach to uncertainty quantification, and show that it is both practical and
theoretically justified. I apply the proposed method to the settings in |Adao, Costinot,
and Donaldson| (2017) and |Allen and Arkolakis| (2022)) and find non-trivial uncertainty

about counterfactuals.

1 Introduction

Economists use quantitative trade and spatial models to evaluate counterfactual scenarios.
For instance, how do expenditure patterns across countries adjust in response to the im-
plementation of a trade agreement? How are welfare levels affected when transportation
infrastructure connecting regions is improved? These counterfactual questions are typically
posed relative to an observed factual situation. This implies that the estimand of inter-
est depends directly on the realized data, rather than on the underlying data-generating

distribution—a departure from standard statistical settings.

*E-mail: bas_sanders@g.harvard.edu. I thank my advisors, Isaiah Andrews, Pol Antras, Anna Mikusheva
and Jesse Shapiro, for their guidance and generous support. I also thank Kevin Chen, Dave Donaldson,
Tilman Graff, Elhanan Helpman, Gabriel Kreindler, Marc Melitz, Ferdinando Monte, Elie Tamer, Davide
Viviano and Chris Walker for helpful discussions. I am also grateful for comments from participants of the
Harvard Graduate Student Workshops in Econometrics and Trade, the 2024 UEA Summer School and the
2025 North American Winter Meeting of the Econometric Society. All errors are mine.



This nonstandard structure is further complicated by the fact that data in quantitative
trade and spatial models are often measured with error (Goes|, 2023; |Linsi, Burgoon, and
Miigge, 2023; [Teti, 2023)). This gives rise to a novel measurement error problem: unlike con-
ventional settings, where the estimand is a function of the correctly measured distribution of
the data, here it depends on the correctly measured realizations. An additional complication
arises when the estimand also depends on a structural parameter that is itself estimated using
the noisy data. As a result, inference must account for three distinct sources of uncertainty:
(i) estimation error, (ii) the direct effect of measurement error on the estimand, and (iii) the
indirect effect of measurement error through the estimation of structural parameter.

To fix ideas, consider the canonical Armington model (Armington|, [1969). In this model,
proportional changes in welfare due to proportional changes in trade costs can be expressed
as a function of baseline bilateral trade flows and the trade elasticity (Arkolakis, Costinot,
and Rodriguez-Clare, 2012)). Because the trade elasticity is unknown, it is typically esti-
mated using the same trade flow data. The central question I address is how measurement
error in the observed bilateral trade flows translates to uncertainty in the predicted welfare
changes. As the Armington model illustrates, this uncertainty arises both directly—through
the mismeasured data used in the welfare formula—and indirectly—through the estimation
of the trade elasticity based on the same mismeasured data.

I outline a general Bayesian framework for quantifying uncertainty that incorporates
these various sources of uncertainty. The framework requires researchers to specify both a
measurement error model and a prior distribution over the latent true data. For settings
where the observed data consist of non-negative dyadic flows, I recommend default choices for
both components that can be calibrated using the observed data, yielding a default empirical
Bayes (EB) approach. Specifically, I suggest modeling measurement error as log-normal and
using a log-normal prior centered on a gravity equation, with additional mass at zero to
accommodate zero flows. This setup is designed for easy implementation and is well suited
to a wide range of quantitative trade and spatial models.

To illustrate the impact of accounting for measurement error, I revisit the settings in
Adao, Costinot, and Donaldson| (2017)) and |Allen and Arkolakis (2022). For the counterfac-
tual analysis in |/Adao, Costinot, and Donaldson| (2017)), which quantifies the welfare impacts
of China’s accession to the WTO, I model measurement error in bilateral trade flows. I
apply my default EB approach, calibrating the prior and measurement error model using the
mirror trade dataset compiled by |Linsi, Burgoon, and Miigge (2023). This dataset reports

bilateral trade flows as recorded by both exporters and importers, which I interpret as two



independent noisy measurements of the latent true trade flow. I plot the estimated change
in China’s welfare from 1996 to 2011 and construct uncertainty intervals that reflect both
measurement error and estimation error.

In the setting of |Allen and Arkolakis (2022), the counterfactual question concerns which
highway links in the United States yield the highest return on investment and thus are
most promising for improvement. I model measurement error in traffic lows and apply the
default EB approach, calibrating the prior and measurement error model using estimates
from Musunuru and Porter| (2019)). I compute uncertainty intervals that account for both
measurement error and estimation error for the three links with the highest estimated returns.
Although these intervals are wide, the relative ranking of the top three links remains robust.

This paper contributes to a growing body of work aimed at improving counterfactual anal-
ysis in quantitative trade and spatial models (Balistreri and Hillberryj, 2008; /Adao, Costinot,
and Donaldson, [2017; [Kehoe, Pujolas, and Rossbach|, 2017; |/Adao, Costinot, and Donaldson,,
2023; |Ansari, Donaldson, and Wiles, [2024} Sanders|, 2025)). The most closely related work is
Dingel and Tintelnot| (2020), which studies calibration procedures in granular environments.
That paper considers models that presume a continuum of agents and shows that with limited
data, unit-level idiosyncrasies are absorbed into the model, leading to overfitting and poor
out-of-sample performance. My focus is on the complementary issue of uncertainty quantifi-
cation due to measurement and estimation error—an issue that persists even in non-granular
settings. |Dingel and Tintelnot| (2020) recommends using fitted values from a low-dimensional
model in place of the raw observed data. I show how this recommendation can be naturally
integrated into the Bayesian framework.

The remainder of the paper is organized as follows. The next section introduces the
notation and the setting I consider. Section [3| discusses how to jointly account for estimation
error and measurement error in quantitative trade and spatial models. Section 4| presents
my default empirical Bayes approach for uncertainty quantification. Section [5| applies the
method to the trade setting in |Adao, Costinot, and Donaldson| (2017) and explores its use
in the economic geography framework of [Allen and Arkolakis| (2022)). Section [6] concludes.

2 Counterfactuals in Quantitative Trade and Spatial Models

This section introduces the notation and discusses the key assumption that commonly un-

derlies counterfactual analyses in quantitative trade and spatial models.



2.1 Notation and Key Assumption

To begin, consider a baseline setting without estimation or measurement error. Let D &
D C R denote a data vector drawn from distribution Pp, and let # € © C R% denote a
structural parameter. Our objective is to compute a scalar counterfactual quantity v € R.

The key assumption that the counterfactual object of interest has to satisfy is:

Assumption 1. For a given counterfactual question and fixed parameter value 8, the coun-

terfactual object v can be expressed as a function of the realized data D:

v=9(D,), (1)
for some known function g: D x © — R.

The exact functional form of g depends on the specific quantitative model that is con-
sidered. In Appendix [A] T discuss Assumption [I] for two leading classes of models, namely
invertible models and exact hat algebra models.

Assumption [I] implies that if the data D are observed without error and the structural
parameter @ is known, we can perfectly recover «[l] This is different from conventional eco-
nomic models, where the object of interest is a function of the correctly measured distribution
of the data, rather than the actual observations. So the key distinction with conventional
settings is:

conventional : v=9(Pp,0) @

this paper : v=g(D,0), D~ Pp.
Importantly, this difference implies that it would not suffice to be able to perfectly estimate
the distribution Pp. Towards uncertainty quantification, we hence need to account for

uncertainty about the realized data themselves rather than their distribution.

2.1.1 Running Example: Armington Model

For illustration, I will derive the function ¢ in a simple example. A canonical workhorse model
in international trade is the Armington model (Armington), [1969)), as outlined, for example,
in |Costinot and Rodriguez-Clare| (2014). Countries are indexed by i,57 = 1,...,n, and with

CES preferences and perfect competition, it follows that the relevant gravity equations and

'Indeed, by fixing ¢ I abstract away from model misspecification, an important problem I engage with in
future work.



budget constraints are:
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Here, Fj; denotes the trade flow from country ¢ to j, and Y¥; = Zgzl Fy, B, = Zzzl Fy; and
ki = (E; —Y;) /Y; denote country i’s total income, total expenditure and the ratio of the
trade deficit to income, respectively. Furthermore, 7;; denotes the iceberg trade cost between
country ¢ and j, which means that in order to sell one unit of a good in country j, country
i must ship 7,; > 1 units, with 7;; = 1. Lastly, ¢ > 0 is the trade elasticity and {x;;} are
idiosyncratic terms.

Now, say we are interested in the counterfactual where we change the trade costs {7;;}
proportionally by {TZEf’prOP
the trade imbalance variables {x;} constant. In Appendix [B.1]I show that we can then solve
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where \;; = F;;/E; denotes the expenditure share that country j spends on goods from
country 7. By Walras’ Law, the proportional changes in income are only pinned down up to
a multiplicative constant. Subsequently, following |Costinot and Rodriguez-Clare| (2014]), we

can exactly solve for proportional changes in expenditure shares and welfare levels:
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The income levels {Y;}, the expenditure shares {)\;;} and the trade deficit variables {x;} are

all functions of the trade flows {F};}, so the relevant counterfactual mapping is

cf,prop cf,prop
{Ej}v{Tij }78|—>{Wi }



It follows that for a given counterfactual question as described by {Tg’pmp}, we only require

knowledge of the baseline trade flows {F};} and the trade elasticity €. So we have:

D = {F;}
0 =c¢.

The specific counterfactual question I consider is a 10% increase in all bilateral trade costs
between 76 countries, so that Ti(;-f’pmp =1401-T{i#j} fori,5 =1,...,n. I focus on the
changes in welfare in the Central African Republic, the Netherlands, Sweden and the United

States. It follows that, fixing {Tfjf’pmp}, we have

Yo =100 - (WP — 1) = g, ({Fy;} ,e),

for each ¢ € {CAF,NLD,SWE, USA}. In Appendix , I show the results for all 76 countries

in the sample.

3 Bayesian Uncertainty Quantification

This section introduces estimation error and measurement error to quantitative trade and
spatial models. It outlines how to jointly account for them and how to quantify uncertainty

for the counterfactual prediction of interest.

3.1 Introducing Estimation Error

The counterfactual prediction of interest will typically depend on a structural parameter 6.
In practice, 6 is unknown and must be estimated from the data, yielding an estimator 0 (D).
It is common in applied work to treat this estimate as fixed—whether it is taken from the
literature or obtained through data-driven methods—thus ignoring the uncertainty associ-
ated with the estimation process. An exception is |[Adao, Costinot, and Donaldson (2017,
which reports confidence sets for the counterfactual predictions of interest that account for
estimation error.

I will take a Bayesian or Quasi-Bayesian approach and assume that the posterior or quasi-

posterior distribution of the true structural parameter 6 given the data D is approximately



normal | Specifically, we have
7°F (0|D) ~ N (8(D), 3 (D)), (5)

where ¥ (D) is a consistent estimator of the sampling variance of é(D)

We can generate draws from this posterior distribution of § given D. For each of these
draws, we can calculate the corresponding value of the counterfactual object of interest using
the relationship v = ¢ (D, #). This allows us to find the posterior distribution of v given the
true data, 72 (y|D).

3.1.1 Running Example: Armington Model (Continued)

As we saw before, for the Armington model we have D = {F};} and 6 = . In practice, the
trade flows are also used to estimate the trade elasticity €. In particular, we can rearrange

the gravity equation in Equation (3)) to find

( )

F,j =exp] —clogY; +log E; —lo TeiYe) © Xk; —€log T + log xi;
j = exp gY,+log E; g;(m 1) Xy e log 7y + log g
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If we then treat d,; = log x;; as a preference shock orthogonal to log trade costs log 7;;, this

results in the non-linear regression model
Fjj = exp {5frig + 69 — elog 7y + %’} .

In the presence of zero trade flows, this suggests using a PPML estimator as in Silva and
Tenreyro (2006). To obtain a valid estimate of 3 ({ F};}) that accounts for dyadic dependence,
I use results from Graham (2020)).

2Formally, this normality could follow from assumptions on the underlying data generating process such
that a Bernstein-von Mises type result holds (Van der Vaart| [2000). In that case the influence of the
prior distribution 7 (6) becomes negligible and the posterior distribution approximately equals a normal
distribution centered at the maximum likelihood estimator. See Appendix [C] for a discussion on justifying
Equation in this setting. In [Sanders (2025) I engage further with structural estimation in quantitative
trade and spatial models.

3This notation nests the scenario where we use an estimator from another study that used different data.

In that case 6 is independent from D and we would write 72F (6| D) ~ N (é, f]) Furthermore, in the case

where 6 is known to be non-negative, one can use a log-normal distribution here.



A key challenge is that trade costs {7;;} are not directly observed. To address this, I
use estimates from [Waugh! (2010]), which are based on an arbitrage condition and follow the
methodology of |Eaton and Kortum, (2002)). |Waugh! (2010) argues that these estimates are
subject to minimal measurement error. Accordingly, I treat them as accurate and proceed
under the assumption that there is no measurement error in this proxy for trade costs.
Appendix provides further details.

The resulting point estimate and standard error are 2.26 and 0.52, respectively. If we as-
sume there is no measurement error, we can find 7% (v, | { Fi;}) for ¢ € {CAF,NLD, SWE, USA}
by sampling trade elasticities from 7% (e| {Fj;}) ~ N (2.26,0.52%) and compute the corre-
sponding changes in welfare. This results in the point estimates and intervals as in Table
and the posteriors plotted in Figure We observe that the Netherlands and Sweden
suffer the largest welfare losses. Note that all posteriors are non-Gaussian which results in

asymmetric intervals.

Point Only
estimate est. error
YCAF -0.72 [-0.95, -0.13]
YNLD -5.47 [-550, —537]
YSWE -3.77 [-4.14, -3.54]
YUSA -1.09 [-1.09, -1.03]

Table 1: Uncertainty quantification for the Armington model, considering only estimation
error.

3.2 Introducing Measurement Error

Under Assumption [I} our object of interest can be written as a function solely of the data
realizations and the structural parameter, which is convenient for answering counterfactual
questions. However, the data realizations are economic variables which are often measured
with error. For instance, |Ortiz-Ospina and Beltekian (2018) and |Goes (2023) highlight
that there are large discrepancies between and within various data sources from trade and
international economics. Motivated by this, I assume that, instead of the true data vector

D, we observe a noisy version D.

4 Alternatively, one can interpret the mapping from true data to observed data as a realization from a
stochastic process, rather than purely as classical measurement error. The Bayesian framework I propose
accommodates this alternative interpretation as well, since any such stochastic relationship between the true
and observed data can be encoded via a likelihood function 7(D | D).
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Figure 1: Uncertainty quantification for the Armington model, considering only estimation
erTor.

For uncertainty quantification for the counterfactual prediction, we will require the pos-
terior distribution of the true data given the noisy data. Towards that end, I introduce a
model for the measurement error and a prior distribution for the true underlying data. Given

such a prior distribution and a measurement error model,

prior : 7 (D)

measurement error : T (D[D) :

we can use Bayes’ rule to find the posterior distribution of the true data given the noisy

data,

. (D|D) 7 (D)

- <D|b> T n ([)|D> 7 (D)dD

This posterior distribution then allows us to generate draws from our posterior distribution

for the true data given the noisy data.ﬂ

5Note that the measurement error distribution does not have to be mean zero, so also allows for measure-
ment error bias. Nevertheless, even mean zero measurement error can result in bias in the counterfactual
prediction of interest. This is automatically taken into account by the Bayesian approach when quantifying



The Bayesian approach allows researchers to incorporate economic knowledge through
the prior. For example when considering measurement error in non-negative flows between

locations one can fit a prior centered on a gravity model, which I will do in Section [4]

3.2.1 Running Example: Armington Model (Continued)

For the Armington model, I will assume that there is measurement error in trade flows { F};}.
This is plausible because in |Linsi, Burgoon, and Miigge (2023)) it is shown that there are
so-called mirror discrepancies in bilateral trade flows between almost all countries. This
means that, for instance, while the value that Germany reports it imported from France and
the value that France reports it exported to Germany should be the same, in practice they
are often different.

Hence, instead of the true trade flows we observe noisy trade flows {Ej}, which in turn
lead to noisy counterfactual predictions 4, for ¢ € {CAF, NLD, SWE, USA}. If we specify a
prior 7 ({F};}) and a measurement error model 7 ({Fw} | {Ej}), we can use Bayes’ rule to
find the posterior 7% ({FZ]} | {sz}>

The default approach presented later in Section |4 can be applied to this setting, so we can
use the provided toolkit to obtain draws from 7M¥ ({FZ]} ] {Fw}> Fixing the structural
parameter at its point estimate, we can see the impact of measurement error in Table [2| and
Figure 2} For Sweden, measurement error does not have that much of an impact compared
to estimation error. For the Central African Republic the variance due to measurement error
is comparable to the variance due to estimation error, but accounting for measurement error
shifts the posterior towards zero relative to the posterior that only accounts for estimation
error. This indicates that measurement error caused a bias here. For the Netherlands and
the United States, measurement error causes much more uncertainty, as the variance of the
posterior accounting for measurement error is much larger than the variance of the posterior
accounting for estimation error. Furthermore, for the Netherlands there is a considerable bias
correction. These plots illustrate that the proposed approach automatically incorporates bias

that is caused by measurement error.

3.2.2 Relation to Measurement Error Literature

The literature on measurement error in nonlinear models is extensive, as reviewed in Hu

(2015) and |Schennach| (2016)), and the most closely related strand of measurement error

uncertainty. Furthermore, the individual measurement error distributions can be arbitrarily correlated in
this general setup.
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Point Only Only
estimate est. error meas. error
YCAF -0.72 [-0.95, -0.13] | [-0.46, -0.05]
YNLD -5.47 [-5.50, -5.37] | [-7.91, -6.28]
YSWE -3.77 [-4.14, -3.54] | [-4.24, -3.46]
YUSA -1.09 [-1.09, -1.03] | [-1.41, -0.36]

Table 2: Uncertainty quantification for the Armington model, considering estimation error
and measurement error separately.

Central African Republic Netherlands

= Point nate

— =Only or
B

Sweden United States of America
60

Figure 2: Uncertainty quantification for the Armington model, considering estimation error
and measurement error separately.

literature is that on nonseparable error models (Matzkin| [2003; |Chesher| 2003; [Hoderlein and|

Mammenl, [2007; Matzkin| [2008; [Hu and Schennachl, 2008} [Schennach, White, and Chalak,
2012 |Song, Schennach, and Whitel, 2015)). However, these results do not apply to my setting.

The key distinguishing feature of the setting in this paper is that the object of interest ~
directly depends on the correctly measured data, because the equality in Assumption [1] is
an exact statement. In contrast, in conventional measurement error settings the object of
interest is a function of the correctly measured distribution of the data, Pp, rather than the
actual realized observations, D. This leads to the key distinction in Equation (2).

This difference is important because in my setting, it would not suffice to be able to

perfectly estimate the distribution Pp. For example in the running example, to answer

11



counterfactual questions we need the realized trade flows {Fj;}, rather than the trade flow
distribution from which they are drawn. In contrast, in a conventional measurement error
setting knowing this distribution would suffice, because the estimands are functionals of
the correctly measured distribution of the data. By virtue of that, we need to account for

uncertainty about the observations themselves rather than their distribution.

3.3 Quantifying Uncertainty about ~

The object of interest is a function of the true data and the structural parameter. From
the discussion in the previous sections, it follows that we must consider estimation error,
the direct effect of mismeasurement, and the indirect effect of mismeasurement through the
estimation procedure. Our goal is to quantify uncertainty about v when we observe D by
accounting for these various sources of uncertainty:.

Recall that we have obtained two different posteriors. The first one is the posterior distri-
bution of v given the true data, 7 (v| D), which incorporates estimation error. The second
one is the posterior of the true data given the noisy data, 7M¥ <D|D>, which incorporates
measurement error. We can combine these two posteriors in different ways to quantify un-
certainty about . Here, I will use E, and Pr, to denote the expectation and probability
under a posterior 7, respectively.

The first approach aims to find an interval C' to which, in posterior expectation over D,

the posterior 7% (7| D) assigns probability 1 — o
E mEe |:PT7TEE {’}/ S C”D} |ﬁ] >1—-a.

In practice, given D one would generate draws from mM¥ <D|D> , and for each of these draws
obtain a corresponding draw from 7 (7| D) | Then, one would report the a/2 and 1 — /2
quantiles of this second set of draws[]] This is summarized in Algorithm [1]

The second approach is more conservative. Suppose we again obtain draws from the
posterior TME (D|D) and for each draw use 7%F (y|D) to compute an interval that covers

~ with probability 1 — «. The second approach then aims to find an interval C? that covers

6If an estimator from another study is used, then 7%% (0| D) ~ N (5, i) In that case, we can sample 6,

and Dy separately, which makes the algorithm much faster.

"Note that counterfactual predictions are typically derived as functions of the full system of counterfactual
equilibrium variables. Thus, whether the researcher is ultimately interested in a scalar outcome, a relative
comparison, or a global average, the mechanics of uncertainty quantification—drawing from the posterior
over the true data and parameters and solving for equilibrium—remain the same.

12



Algorithm 1 Uncertainty quantification about v = g (D, 0)

1. Input: noisy data D, number of bootstrap draws B, coverage level 1 — « (choose B
and « such that a/2- B € N).

2. Forb=1,..., B,
(a) Sample Dy ~ mME <D|D)
(b) Sample 6, ~ 7EF (6| Dy).
(c) Compute v, = g (Dy, ) -
3. Sort {3}, to obtain {fy(b)}le with v < 4@ < < 4B,

4. Report [y(@/2B) A((1=a/2-B)]

these 100 (1 — a) % -intervals with probability 1 — a:

PTWME {PTWEE {’7 € C2|D} >1-— a|f)} >1—a.

In practice, one can generate 100 (1 — ) % -intervals around + for many draws from ¥ <D|D> :
and then report the /2 quantile of the set of lower bounds and the 1 — /2 quantile of the
set of upper bounds.

Going forward, I will focus on the less conservative interval C!, because it will turn out
that in applications the interval C? will yield extremely wide intervals for many cases. In
Appendix I compute the interval C? for one of my applications.ﬁ

3.3.1 Running Example: Armington Model (Continued)

Consider again the Armington model with noisily measured bilateral trade flows. Table[3|and
Figure |3 display the resulting intervals and posterior distributions for the objects of interests,
respectively. The posteriors that account for both estimation and measurement error are
compositions of the two previously plotted posterior distributions. In addition, Figure
presents the posterior distributions for the trade elasticity. We observe that measurement

error induces attenuation bias.

8Note that one could in principle use a single prior 7 on the underlying data generating process to handle
both estimation error and measurement error. I instead combine two simple priors to separately handle
estimation error and measurement error, since this leads to highly tractable procedures, albeit at the cost of
complicating the Bayesian interpretation of resulting intervals.
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Point Only Only Est. and
estimate est. error meas. error | meas. error
YCAF -0.72 [-0.95, -0.13] | [-0.46, -0.05] | [-0.47, -0.03]
YNLD -5.47 [-5.50, -5.37] | [-7.91, -6.28] | [-8.08, -6.24]
YSWE -3.77 [-4.14, -3.54] | [-4.24, -3.46] | [-4.32, -3.45]
YUSA -1.09 [-1.09, -1.03] | [-1.41, -0.36] | [-1.44, -0.31]

Table 3: Uncertainty quantification for the Armington model, considering estimation error
and measurement error simultaneously.

Central African Republic Netherlands
16

i
A N I . 0 e T —
05 05 1 15 95 ) -85 8 75 7 65 © 55

Sweden United States of America
60

Figure 3: Uncertainty quantification for the Armington model, considering estimation error
and measurement error simultaneously.

3.3.2 Relation to Dingel and Tintelnot (2020)

The most relevant paper in the literature on improving counterfactual calculations in quanti-
tative trade and spatial economics is |Dingel and Tintelnot| (2020), which studies calibration
procedures in granular settings. In these settings, individual idiosyncrasies do not wash out
and can cause overfitting and poor performance out-of-sample. To deal with this, |Dingel and
Tintelnot| (2020)) proposes to, instead of the observed data, either use fitted values obtained
using a low-dimensional model or smooth the data using matrix approximation techniques.
These procedures can readily be incorporated into Algorithm . The resulting values {fy}le
can then be interpreted as draws from the posterior of the proposed counterfactual estimator

from Dingel and Tintelnot| (2020) applied to the data without measurement error.
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Figure 4: Uncertainty quantification for the trade elasticity in the Armington model.

4 Widely Applicable Default Empirical Bayes Approach

This section proposes a default empirical Bayes (EB) approach that can be applied in many

settings. It also discusses the toolkit that accompanies the paper.

4.1 Default Prior and Measurement Error Model

Often it will be clear what a sensible prior and measurement error model are, for example
a Dirichlet prior when observing migration shares. For when this is not the case, in this
section I provide a widely applicable default approach for quantifying uncertainty about a
counterfactual prediction of interest. This default approach can be applied out-of-the-box to
many quantitative trade and spatial models, but can also easily be adapted to other settings.
It recommends default choices for the prior distribution and measurement error model, and
discusses how to calibrate both based on observed datall

Concretely, consider the setting where we can write v = g ({F;},0), for {F;;} a set of
non-negative flows between locations. Assume we have access to an estimator @ ({Fj;}) with

estimated sampling variance ¥ ({Fj;}). This setup is commonplace in quantitative trade and

9Rather than estimating the parameters of the prior distribution for the true underlying data, which

corresponds to an empirical Bayes approach, one could alternatively specify prior distributions for these
parameters, which corresponds to a hierarchical Bayes approach.
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Algorithm 2 Uncertainty quantification about v = ¢ (D, 6) using Dingel and Tintelnot| (2020)

1. Input: noisy data D, number of bootstrap draws B, coverage level 1 — « (choose B
and « such that a/2- B € N).

2. Forb=1,..., B,
(a) Sample Dy ~ 7MF <D|D)

(b) Sample 6, ~ 7EF (6| Dy).
(c) Compute DPT = sPT (D).
i. For example using a low-dimensional model: DPT = E [D,|X].

ii. For example using matrix approximation: D, = UXV’ = DPT =UX, VT,
where 3 only keeps the first 7 singular values to non-zero.

(d) Compute 7T = g (DPT,6,).

3. Sort {beT}le to obtain {7DT’(b)}f:1 with yPT(1) < APTR) < - < APT(B),

4. Report ['yDT’(a/Q'B)7fyDTv((l—a/Z)-B)}‘

spatial models (Costinot and Rodriguez-Clare, 2014 |Redding and Rossi-Hansberg, 2017
Proost and Thisse, 2019).

I assume that both the prior distributions on the true flows and the measurement errors
are mixtures of a point mass at zero and a log-normal distribution, a so-called spike-and-slab
distribution (Mitchell and Beauchamp, 1988). The point mass at zero is necessary because
in both trade and spatial applications bilateral flows of zeros are common, particularly when
considering more granular data (Helpman, Melitz, and Rubinstein, [2008; Dingel and Tintel-
not), [2020). This prior and measurement error model imply that the posterior distribution of
the true flows given the noisy flows will also be a spike-and-slab distribution. This mixture
model is fairly flexible and the conjugacy is needed for computational speed. Furthermore,
I assume that the prior mean exhibits a gravity relationship, for which there is strong em-
pirical evidence (Head and Mayer, 2014; Allen and Arkolakis|, 2018).@ This is summarized

in the following assumption:

100ne can easily enrich this gravity prior by adding other “distance” variables such as differences in income
or productivity, or by adding dummies that indicate similarity such as contiguity or a common language, see
for example |Silva and Tenreyro| (2006]). I experimented with this but the results do not change much.
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Assumption 2. We have

¢

true zeros : P,;j ~ Bern (p;;)
spurious zeros : B;; ~ Bern (b;;)
prior : Fyj~ Py~ 0o+ (1 - By) - eVlosh)
py; = Blog disty; + € + arjest
likelihood : Fy|Fyj ~ 80 - T{F; = 0} + | Bi; - 6o+ (1 — By) - M (oFusd) | \1{F,; > 0},
fori,j = 1,..,n, where dist;; denotes the distance between locations i and j, af™® is an

dest

origin fived effect and o is a destination fived effect.

The probability that a bilateral trade flow is truly zero is denoted by p;;, and a true
zero flow is assumed to always result in an observed zero. The probability of a spurious
zero—that is, an observed zero despite a non-zero underlying true flow—is denoted by b;;.
The prior means and variances are denoted by {;; } and {s?j }, respectively. The flow-specific
measurement error variances are denoted by {g‘fj}

Gather the parameters in ¢ = ({pij} Abiit B, {a?rig} , {oz?eSt} , {S?j} , {§%}> It follows

that the posterior distribution for the true flow between location ¢ and j, Fj;, given its noisy

version, Fj; is given by

g2 -
3 Qij - 8o + (1 — Q) - Vlmih) ;=0
Fl‘E.ﬂﬁ ~ s?. ~ gZ.Q. 1 1 -1 ~ ? (6)
exp A N | iz log 19 + - i (— + :) Fi; >0

ij

g g Pij
for 4,7 =1,...,n, where @);; ~ Bern (piﬁbij(lfpij))‘

Conditional on being able to calibrate the parameters 4, one can quantify uncertainty
about 7 by finding the interval C* as described in Section [3.3] Then, a default procedure for

quantifying uncertainty about v is summarized in Algorithm

Remark 1. One can verify how reasonable the normality assumption on the prior and mea-

surement error model is by comparing the histogram of the normalized residuals

log Fz‘j — { B log distij + &;’rig + d;iest}
NE BT

with the probability density function of a standard normal distribution. To further check
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Algorithm 3 Uncertainty quantification about v = g ({F};},0)

1. Input: noisy flows {Ej}, estimated prior and likelihood parameters 15, structural pa-

rameter mapping {Fj;} — 0,%, number of bootstrap draws B, coverage level 1 — a
(choose B and « such that a/2- B € N).

2. Forb=1,..., B,
(a) Fori,j =1,...,n, draw F};;, from the posterior distribution Eﬂﬁg, 0.
(b) Sample
0, ~ N (0 <{Ej,b}2j:1) Y <{F1ij,b}::j:1)> :
(c) Compute v, =g ({Ej,b}zjzl 736)-
3. Sort {m};, to obtain {7®},7, with 71 <9 < . <4®.

4. Report [V(Q/Q'B),V((I_Q/Q)'B)] '

the reasonableness of the gravity prior, we can look at the adjusted R-squared of the gravity
model and, following|Allen and Arkolakis|(2018)), plot the log flows against the log distance for
positive flows, after partitioning out the origin and destination fixed effects. In Appendices

[G] and [H] I perform both these checks for my applications.

Remark 2. Specifying a prior and measurement error model is difficult and one might be
worried about misspecification. For the normal-normal model, we can use prior density-ratio
classes to find worst-case bounds on posterior quantiles over a neighborhood that contains
distributions that are not too far away from the assumed normal distribution for the prior
and measurement error model. It turns out that incorporating uncertainty around the prior
and measurement error model amounts to reporting slightly wider quantiles. The details can
be found in Appendix [D]

Remark 3. In this default approach, one might worry about attenuation bias when plugging
in the shrunk data {Ej:b}ijl into the estimator A. Such bias would indeed arise if the
data were shrunk toward zero or another constant (Chen, Gu, and Kwonl 2025)). However,
the default approach instead shrinks toward an economically motivated gravity prior, whose
fitted values are expected to serve as a reasonable proxy for the true flows. A simulation

exercise illustrating this point, based on the running example, is provided in Appendix [E]
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4.2 Empirical Bayes Step: Calibrating

The parameters in ¥ need to be calibrated. In consider two cases.

4.2.1 Baseline Case with Domain Knowledge

In the baseline case I restrict the measurement error variance and prior variance to be
constant across flows so that ¢}; = ¢* and s7; = s* for all 4, j = 1, ..., n. Furthermore, I require
knowledge of the common measurement error variance ¢? and of the Bernoulli parameters
{pi;} and {bij}. It then remains to estimate <ﬁ, {a?rig } ,{agest] ,52). Towards this, we

can combine the equations in Assumption [2| to find
log Fij ~ N <B log disty; + "¢ + a?e“, s? + §2> . E;>0.

Using maximum likelihood estimation, it follows that the prior mean parameters can be

estimated from the regression

log Fij = Blogdist;; + a?rig + oz?eSt + @i, Fij >0,
with ¢;; an error term. It follows that the estimated prior means and variance are

fii; = Blogdisty; + ™ + &i*", di,j=1,..,n (7)
# — max {\75& <log Fyy — fiy|Ey > 0) ~&, 0} . (8)

Obtaining estimators for these prior means and variances is what Walters| (2024)) calls the

deconvolution step.

4.2.2 Mirror Trade Data

When the non-negative bilateral flows correspond to trade flows between countries, I use the
mirror trade dataset from |Linsi, Burgoon, and Miigge (2023)) to calibrate ©J. This dataset
has two estimates of each bilateral trade flow, both as reported by the exporter and as by the
importer. I interpret this as observing two independent noisy observations per time period

for each bilateral trade flow. The details for the calibration can be found in Appendix [F]

1Tn the absence of a prior on the measurement error variance, one could adopt a sensitivity analysis
approach by varying the variance to determine the minimum level of measurement error that would overturn
the counterfactual conclusion.
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I first calibrate the probabilities of true zeros {p;;} and the probabilities of spurious zeros
{bi;} by noting that for each bilateral trade flow we can use the time variation to identify
the probabilities of observing a certain number of zeros. I then leverage the model structure
to calibrate the measurement error variances {gfj} Lastly, I calibrate the prior parameters,
which are period-specific in this case, using a similar approach as for the baseline case with

domain knowledge.

4.3 Toolkit

Accompanying the paper, I provide an easy-to-use toolkit that consists of three programs/”|
The first program implements the high-level approach in Algorlthml It takes (B D, 7ME § % g>
as inputs and outputs posterior draws {%}b 1- The second program implements the default
approach in Algomthml It takes as inputs (B ,{ } 19 9 )y g) and again outputs pos-
terior draws {%}b - The third program, which can serve as an input to the second, uses
the mirror trade dataset of [Linsi, Burgoon, and Miigge| (2023)) and allows the researcher to
choose countries and years for which they want to estimate the parameters of the prior and

measurement error model. This is summarized in Algorithm [4]

5 Applications

In this section I discuss the applications in |Adao, Costinot, and Donaldson| (2017) and |Allen
and Arkolakis| (2022). In both cases, accounting for estimation and measurement error leads

to substantial uncertainty around the counterfactual predictions.

5.1 Application 1: Adao, Costinot, and Donaldson (2017)
5.1.1 Model and Counterfactual Question of Interest

The empirical application of |Adao, Costinot, and Donaldson| (2017) investigates the effects of
China joining the WTO, the so-called China shock. Specifically, the authors examine what
would have happened to China’s welfare if China’s trade costs had stayed constant at their
1995 levels. They consider n countries and 7' time periods.

The counterfactual objects of interest is the change in China’s welfare, defined as the

percentage change in income that the representative agent in China would be indifferent

12The toolkit is written in MATLAB and can be found on my website, https://sandersbas.github.io/. A
version in R is available upon request.
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Algorithm 4 Toolkit

1. Program 1: General algorithm.
e Input: number of draws B, data D, functions D — Dy, D (é, f)), (D,0) — ~.

e Output: posterior draws {7,},_,.

2. Program 2: Default Approach

e Input: number of draws B, noisy flows {Ej}, estimated parameters o, functions,

e Output: posterior draws {fy;,}le, plot that compares histogram of the normalized
residuals with the probability density function of a standard normal distribution
as per Remark

3. Program 3: Mirror trade data calibration.

e Input: countries Z, years to produce bootstrap draws for T, years to use for
calibration %alibration'

e Output: noisy flows {E-j}, estimated parameters 5‘, adjusted R-squared of the

gravity model for the last year in 7, plot of log flows against log distance for
positive flows, after partitioning out the origin and destination fixed effects as per

Remark

about accepting instead of the counterfactual change where China’s trade costs are fixed at
their 1995 levels. The details of the model can be found in Appendix [G.1][]] The key insight
is that we can express the change in China’s welfare in period ¢, denoted by Wéﬁlf’rf;)‘;, as a
function of all the bilateral trade flows in different periods {Fj;:} and the trade elasticity ¢,

which is estimated by & ({F};,})[] Hence, we can write

cf,pro
WCtha,}Z =Gt ({Fijﬂf} 76) ) (9)
for t = 1,...,T and known functions g¢; : Rin(n_l) x Ryy — R. Then, conditional on a

prior distribution for the true bilateral flows {F};;} and a measurement error model, we can

quantify uncertainty for {W@iﬁj‘;}

13Tn|Adao, Costinot, and Donaldson! (2017)), the authors consider two demand systems: standard CES and
“Mixed CES.” T focus on the standard CES specification.

14 As in Section I focus solely on measurement error in trade flows, implicitly assuming that all other
observed data are measured without error.
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5.1.2 Measurement Error Model and Prior

The default approach from Section [4] can be applied. For the empirical Bayes step, the
calibration of ¥, we can use the mirror trade data setting from Section .2] Since there are

no zero flows in this application, the estimated posterior of interest is

Fijul F, {N < 5 tog (Fye) + 0 Loy
ij ¢ Lij e ~ exXp -5 oy 10g < ij,t) 5 oy Migts | =57 T =3 )

ij ij ij

where {52}, {2}, { ~Z-j,t} and {fi;;;} are all defined in Appendix

5.1.3 Results

Having obtained a posterior distribution for the true trade flows given the noisy trade flows,
we can now quantify uncertainty about the counterfactual predictions of interest. In Figure
Bl I reproduce Figure 3 of[Adao, Costinot, and Donaldson| (2017)), which plots the percentage
change in China’s welfare as a result of the China shock for each year in the period 1996-2011,
and include three different 95% intervals.

The first only considers estimation error and hence assumes the data are perfectly mea-
sured. It is constructed using code provided by the authors, which matches the discussion
in Section and samples from the normal distribution with mean and variance equal to
the GMM estimator for the trade elasticity ¢ and its sampling variance, respectively. The
resulting intervals are small for the period before the year 2000, and then slowly become
wider. These are the intervals reported in |Adao, Costinot, and Donaldson| (2017)).

The second region considers only measurement error and no estimation error in €. The
resulting interval is considerably wider than the interval based solely on estimation error,
especially in the first few years. Finally, the third region combines estimation error and
measurement error and follows Algorithm [3] The resulting bounds seem to be reasonable
compositions of the bounds considering only estimation error or only measurement error. In

Appendix [G.3| I perform additional analyses to check the robustness of these results.

5.2 Application 2: Allen and Arkolakis| (2022)
5.2.1 Model and Counterfactual Question of Interest

The empirical application in Allen and Arkolakis (2022) aims to estimate the returns on

investment for all highway segments of the US Interstate Highway network. The authors do
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Figure 5: EB uncertainty quantification for heteroskedastic normal shocks to {log Fj;.} for
the change in China’s welfare due to the China shock. The solid blue line is the estimate as
reported in |Adao, Costinot, and Donaldson| (2017).

so by introducing an economic geography model and calculating what happens to welfare
after a 1% improvement to all highway links. Combining these counterfactual welfare changes
with how many lane-miles must be added in order to achieve the 1% improvement, they find
the highway segments with the greatest return on investment.

This exercise only requires data on incomes and traffic flows of the n locations and
knowledge of four structural model parameters. Three of these parameters are taken from
the literature and are assumed to have no uncertainty around them. The fourth, which is the
congestion elasticity v, is estimated using the noisily measured traffic flow data. The details
of the model can be found in Appendix [H.I| but the key relation is the one that maps the
average annual daily traffic (AADT) flows {Fj;} to the change in welfare W<ProP which is

WeEPeP = g ({Fyj},v)

for a known function g : Ri("fl) x R —R.
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5.2.2 Measurement Error Model and Prior

For this application we can again apply the default approach from Sectiond] For the empirical
Bayes step we can use the baseline case from Section [£.2] There are no zeros so we only
have to provide an estimate of the measurement error variance ¢2. Musunuru and Porter
(2019) estimates that the measurement error variance of the logarithm of the average annual
daily traffic (AADT) flows, which is exactly the data that [Allen and Arkolakis| (2022) uses,
is between 0.05 and 0.20. To obtain a lower bound on uncertainty, I will use a uniform
measurement error variance of 0.05.

With ¢2 = 0.05, I use Equation (8]) to find a prior variance of 52 = 0.101. This results in
the following estimated posterior distribution for the true traffic flow between country ¢ and

J, Fij, given its noisy version Fj;, for 7,5 =1,...,n:
Fyl By ~ exp { N (0.6 - log i +0.331 - iy;,0.033) }
where fi;; is defined in Equation (7).

5.2.3 Results

The counterfactual question of interest is which links have the highest return on investment,
and the authors of |Allen and Arkolakis (2022)) report the top ten links. For exposition, I will
focus my analysis on the three best performing links. Similarly to the setting in Section [5.1]
I consider scenarios with only estimation error, only measurement error, and both estimation
and measurement error.

Concerning estimation error, I follow the discussion in Section [3.1] and sample from the
normal distribution with mean and variance equal to the IV estimator for the congestion
elasticity v and its reported squared standard error, respectivelyﬁ Table 4| shows the 95%
equal-tailed intervals for the top three links. The intervals that consider just measurement
error or estimation error are of similar order of magnitude, and the interval that combines
them seem a sensible composition.

From a policy perspective it is of interest whether the ranking between these links can

change due to estimation and measurement error. Therefore, Table [5|shows the 95% intervals

5Here, 1 follow the inference method used by the authors of Allen and Arkolakis| (2022) and use the
clustered standard error. However, as discussed in [Sanders| (2025), clustering at the edge level tends to
understate uncertainty relative to approaches that account for dyadic dependence in the data, and therefore
yields narrower confidence intervals.

24



Point Only Only Est. and
estimate est. error meas. error | meas. error
Link 1 10.43 [8.33, 11.47] [8.69, 14.15] [7.86, 14.89]
Link 2 9.54 [7.02, 10.76] [7.31, 10.83] [6.60, 11.32]
Link 3 7.31 [5.05, 8.57] [6.78, 8.18] [5.30, 8.90]

Table 4: EB uncertainty quantification for the three links from |Allen and Arkolakis| (2022)
with the highest return on investment. Link 1 is Kingsport-Bristol (TN-VA) to Johnson City
(TN), link 2 is Greensboro-High Point (NC) to Winston-Salem (NC) and link 3 is Rochester
(NY) to Batavia (NY).

for the difference between link 1 and link 2, and the difference between link 2 and link 3]
It follows that the rankings are generally robust against estimation error and measurement
error. Additional discussion and analyses can be found in Appendices and [H.3]

Point Only Only Est. and
estimate | est. error | meas. error | meas. error
Link 1-Link 2 0.89 [0.61, 1.29] [0.38, 5.39] [0.38, 5.66]
Link 2-Link 3 2.23 [1.96, 2.25] [—0.05, 3.27] [0.02, 3.49]

Table 5: EB uncertainty quantification for the differences between the three links from Allen
and Arkolakis (2022) with the highest return on investment. Link 1 is Kingsport-Bristol
(TN-VA) to Johnson City (TN), link 2 is Greensboro-High Point (NC) to Winston-Salem
(NC) and link 3 is Rochester (NY) to Batavia (NY).

6 Conclusion

In this paper, I provide an econometric framework to examine the effect of parameter un-
certainty and measurement error for an important class of quantitative trade and spatial
models. This setting departs from conventional measurement error models because the ob-
ject of interest depends directly on the correctly measured data realizations, rather than on
their distribution. I adopt a Bayesian approach to quantify uncertainty in counterfactual pre-
dictions, explicitly incorporating both estimation error and measurement error. I apply the
framework to the settings in /Adao, Costinot, and Donaldson (2017) and |Allen and Arkolakis
(2022)), and find substantial uncertainty surrounding key economic quantities in both cases.
These findings highlight the importance of accounting for measurement and estimation error

in counterfactual analysis.

16This simple exercise is intended purely for exposition. For a more formal treatment of inference on ranks,
see Mogstad et al.| (2024)).
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Appendix

A Finding g in Two Leading Classes of Models

This section informally discusses how to find the function g for two leading classes of models,
namely invertible models and exact hat algebra models. We are generally interested in the
effect of proportional changes to the fundamentals, X € X C R% . Denote these proportional
changes by X¢PP ¢ RIx  In particular, we want to find the corresponding proportional
changes to the observed data, DP*P ¢ R>. Qur scalar prediction of interest, v, will then
be some transformation of the vector of change variables DP*P. That is, we consider a
mapping of the form
XCEPIoP [y g Deterop Ly o

Given such a structure, it suffices to focus attention on the mapping

)((:f,pl”op7 D, 0 — DCf,pYOP' (10)

A.1 Invertible Models

Redding and Rossi-Hansberg| (2017)) define a model to be invertible if there exists a one-to-
one mapping from the observed data and structural parameter to the fundamentals. Once
we have obtained the levels of the fundamentals, we can apply the proportional change of
interest and find the corresponding proportional changes to the observed data. The high-level

steps of this approach are:

1. “Back out” the levels of the fundamentals X using the observed data D and the struc-

tural parameter 6.

2. Find the counterfactual levels of the data D ® DP™P from the counterfactual levels
of the fundamentals X ® XPP and the structural parameter 6, where ® denotes

element-wise multiplication]!"]

3. Find counterfactual changes variables DP™P using the counterfactual levels of the
data D ® DP™P and the baseline levels of the data D.

Existence of the mapping in Equation follows.

1"Here, assume that the equilibrium conditions are unique, so that for each (X, ) there exists a unique D
(possibly up to a multiplicative constant).
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A.2 Exact Hat Algebra Models

Exact hat algebra models (Costinot and Rodriguez-Clare, 2014) are models for which the
mapping in Equation holds “directly”, without the intermediary step of backing out
the levels of the fundamentals. The Armington model presented in the running example in
Section is one such exact hat algebra model.

B Details for Armington Model

B.1 Derivation of System of Equations for {Y"""}

Rearranging Equation (3]) and recalling that \;; = F;;/E; yields:

_ (mY) X
>k (T Vi) ™% Xaj

Next, plugging in Equations and into Equation yields

Aij i,j=1,..,n. (11)
Fij =X (1+55) Y, Li=1..mn

If we sum over j, we can use Y; = Z?Zl Fy to find

i=Y MNj(l+r)Y;,  i=1,..n (12)

Jj=1

In the counterfactual equilibrium, Equation should still hold. Because k; is constant

across equilibria for all 4, this results in:

YEPPY, = S CNTPPN (14 k) YRV =1, (13)

=1
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Similarly, Equation should still hold in equilibrium. Using that x;; is constant across

equilibria for all 7, j, we find

1 ij
—c
)\ij z ch,propT 'ch,propY )
E\ Tkj kjdy k Xkj
— —E
(ch,propycf,prop> € (Tuyz) Xij
1 Y ! Z[(leyé)_gxlj

_ —€
)\ij Z Cf,prochf,prop N (Tkjyk) Xkj
k k

Thi Zg(Tere)_sng‘

—&
cf,prop cf,prop
(7' TijY; Y; Xij

cf,prop __

cf,pro cf prop\ ©

v

= e
cf,propy ~cf,prop
>k Akj <Tkj Y,

ij=1,..n. (14)

Finally, combining Equations and yields the desired expression

cf,pro cf,prop\ °
(T"vp Pyt p)

)

— N (L+ k) YIPPYS 0 i=1,

f § :
)/iC ,pI‘OpYi —

- cf,prop~ ~cf,prop
i Dk Mk (Tkj Y,

B.2 Results for Other Countries

Figure [6] reproduces Figure [3] for all 76 countries in the sample.

B.3 Calibration Procedure and Computational Details

The default approach from Section [ can be applied. For the empirical Bayes step, the
calibration of ¥, we can use the mirror trade data setting from Section [4.2]

To construct {£7;}, I use the mirror trade data for bilateral flows {F};},; and the trade
flow data from [Waugh| (2010) for own-country flows {F};}. Because the mirror trade data
report zero bilateral trade flows for Belgium, I exclude it from the analysis, resulting in a
sample of 76 countries. For the estimation step, I use estimates of trade costs from Waugh
(2010), which are available for 42 of these 76 countries.

C Discussion on 7% (§|D) ~ N (8 (D),X (D))
Suppose 6 is estimated using an extremum estimator, so that

6 = argmin Q, (6),
6
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with corresponding asymptotic distribution
n=“ (5—9) 4 N(0,9Q),
for some rate a. Define the quasi-posterior

exp (@n (0))
Jo exp (Qn (0)) d6”

7 (0|D) =

Under regularity conditions, by results in |Chernozhukov and Hong (2003)), we know that
draws from this quasi-posterior will eventually behave as draws from N (é, Q>

In the special case that @, (6) corresponds to a likelihood, the quasi-posterior is an actual
posterior distribution. However, in quantitative trade and spatial models, the most common

estimation procedure is GMM, where there are some moment conditions

for i =1, ..., M. These allow us to estimate # as

) | M ' | M
f = argmin { — m; (D, 0) y W, < — m; (D, 0) p,
gpin] 13m0 W35 om0

for W, a consistent estimator of the efficient weight matrix. In this case, we can still ar-
gue approximate normality of the quasi-posterior 7@ (6| D), but we cannot interpret it as a

posterior distribution.

D Misspecification of the Measurement Error Model and Prior

We are interested in the potential effects of misspecification of the measurement error model
or prior. Specifically, focusing on the widely applicable default approach from Section [d] we
would like to know how the quantiles of the posterior distribution of the counterfactual object
of interest given the noisy flows change when the assumptions of a normal measurement error
model or a normal prior do not hold. Suppose for exposition that there are no zeros and

that the structural parameter 6 is known, so that we can obtain the posterior distribution

o (o fios i ).
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D.1 Measurement Error Model

Let L ({log F};}) = = ({log Fzy} | {log E]}> denote the likelihood function of the noisy log
flows {log Fw} given the true log flows {log Fj;}. For a given ¢ > 1, define a density-ratio

class of distributions to be the set of all conditional distributions for {log Fw} with pdf p
such that

1
pERCZ{pep“'L@)Sp(w)Sc-L(x) VareR”(”+1)},
C

for P the set of all pdfs.

For uncertainty quantification, we are interested in the quantiles of the posterior distri-
bution 7MF (h (log{Fi;}) | {log ]%-}) for a generic function h (-). Denote the a-th posterior
quantile based on likelihood p by Q. vz, 5, ().

Proposition 1. We have:

Quore i (0) = Q o
Su ME o) = ME —_—
p€7gc ™ ,p;h s ,L,h 1—a T 0402

inf QW]WE’pJL (a) = QWME7L7h (;) .

PER. a+(1—a)c?

So instead of reporting the interval

[QWAIE7L7}Z (Oz/Q) s QWAIE7L7}Z (1 — a/2)}

one could report the robust interval

@er (eramare) e (2 me)|

For example for o = 0.05 and ¢ = 1.5, we would consider the 1.1%-quantile and the 98.9%-
quantile, instead of the 2.5%-quantile and the 97.5%-quantile, respectively.
The result in Proposition [I] follows from noting that

a:/q 7T(h(:)3)|:i)dh(a7):/ 7 (x|Z) dz

—00 z€h~1([—00,q])

= p(x)m(z)de = a / p(x) 7 (x)de.
weh1(|—c04) L= Jogn1(-oca)

Focusing on the upper bound, it follows that we want to choose p (x) on the left-hand side
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as small as possible and p (x) on the right-hand side as large as possible for all x:

1 Q

‘ /fEhl([—oovq:up]) Flemode =15 /xgzhl([—oovq;up]) Flopmie)ds
= /_lj:p Lo (h () | {10g Fzg}) dh (z) ac

Tl _a+ta

D.2 Prior

Note that the likelihood L and the prior 7w enter the posterior in exactly the same way, so
we can interpret the procedure in the previous subsection also as sensitivity analysis with

respect to the prior.

E Attenuation Bias

Consider a simplified simulation setup based on the running example, where forz,7 =1,...,n

and 7 # j, the data generating process is

log 7;; = p - log dist;;
log Fjj ~ N (—8 -log 7i;, 52)
log Fj; ~ N (log Fj;,6?) .

If as a prior 7 (log Fj;) we use the gravity prior
N (B - logdisty;, s°)

the relevant posterior ™ <log F;j|log Fij> equals

2 R 2 Cov <log disty;, log Fy; ) _ 11\
S log b+ 5————— logdistyy, | 5 3
s2 4+ ¢ s24¢ Var (log dist;;) s

Assuming known variances s*> and ¢2, we can obtain draws {log Ej,b}szl and find the median

posterior bias

_ ~ B
Cov (log Tij, log Fl-j7b>
Med — ~— —€
Var (log 7;5)
b=1
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We can repeat this exercise M times. Figure[7]plots the histogram of median posterior biases
across these Monte Carlo draws, using M = 10°, B = 1000, p = 0.5, dist;; = |i — j|, e =5
and s = ¢ = 0.1. We observe that there is no attenuation bias because we are shrinking
towards the economically motivated gravity prior, and the fitted values are a good proxy for

the true flows.

Figure 7: Posterior bias across Monte Carlo draws.

F Calibration with Mirror Trade Data

F.1 Model

I use the mirror trade dataset from |Linsi, Burgoon, and Miigge| (2023)). This dataset has

two estimates of each bilateral trade flow, both as reported by the exporter and as by the

importer. I interpret this as observing two independent noisy observations per time period
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. .. \T
for each bilateral trade flow: {{sz ” th} } . It is helpful to rewrite the model:
’ Tlt=1 ..
i#j

p

true zeros : Pz‘j,t ~ Bern (Pij)
. 1 2
Spurious zeros : Bmt, Bij,t ~ Bern (b;;)
prior : Fiji ~ Piji- 00+ (1 — Pijy) - ettt - eMiaet

i = Belog dist,; + Oé;?;ig + adest
Nije ~ N (0, %)
fikelihood 4 F%’Aﬂj’t ~ 0o - I{Fyj0 = 0} + [Bilj,t 0o + (1 — Bz‘ljyt) ~Fije - 6837'*’5} -I{Fj;+ > 0}
Fi%,t|Ej,t ~ by - T{F; = 0} + [Bizj,t 0o + (1 — ij7t) - Fyjy- esgjyt} L{E,, >0}

ebnen ~N(0,63).

\ 15,07 “ig,t

F.2 Bernoulli Parameters
For a given bilateral trade flow from 7 to j in period ¢, we can compute the ex-ante probability

of observing a certain number of zeros:

Pr {two observed zeros} = p;; + (1 — p;;) - b,
Pr{one observed zero} =2 (1 — p;;) - (1 — by;) - by,
Pr {no observed zeros} = (1 — p;;) - (1 — by;)>.

We can use the time variation to identify the probabilities on the left-hand side:

T
1 _ .
Bia = 7 0 I{Fl = 0.F2, = 0}
t=1
T
i1 = EZH{FI =0,F2,>00r F.,>0,F2, = 0}
15,1 T 17, gt 17,t )T ag,t
t=1
T
> :l IJFL >0 F2. >0
Z’L],O T ij,t > )+ gt > :

o+
Il

1
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When Z;;9, Zij1, Zijo € (0,1), we can back out the estimated probability of a true zero p;;

and the estimated probability of a spurious zero Z~),-j by solving

jZ
)
B B )
Zijo = (L= py) - (1 —bij)
The solutions are

3 Zii1+ 2%50)° - Zij

4Zij.0 Zij1 + 2Zij0

I separately consider the possible cases where the estimated probabilities (Z;;.2, Zij1, Zij0) are

not all strictly between 0 and 1:

1. Zijo = 1,Z51 = 0,Z;;0 = 0: In this case we observe only zeros so I set the estimated
probability of a true zero p;; to 1, which makes the estimated probability of a spurious

zero by irrelevant.

2. Zijo=0,%Z;1 =1, 20 = 0: In this case one country always reports a positive flow and
the other reports a zero flow. In this case I set the estimated probability of a true zero

pi; to 0, and the estimated probability of a spurious zero l;ij to 0.5.

3. Zijo = 0,%Zi;1 = 0,%;0 = 1: In this case all reported flows are positive, so I set both
the estimated probability of a true zero p;; and the estimated probability of a spurious

Zero l;ij to 0.

4. Zijo € (0,1), 2,1 € (0,1), 20 = 0: In this case there are no years with two reported
positive flows. In this case I set the estimated probability of a true zero p;; to Z;;2, and

the estimated probability of a spurious zero Bij to Zij1-

5. Zijo € (0,1),Z;1 =0, Z;0 € (0,1): In this case some years have two zeros and other
years have two positive flows. In this case I set the estimated probability of a true zero

Dij to Zij2, and the estimated probability of a spurious zero INJZ-]- to 0.

6. Zij2 = 0,21 € (0,1), %50 € (0,1): In this case there are no reported double zeros

so I set the estimated probability of a true zero p;; to 0. I then solve the system of
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equations:

Zijg = Pr {one observed zero|no spurious zeros, observed zeros < 2}
_ 2bi (1 b ) _2b
= — - — = J
2, (1 . bij> n (1 - bij) 1+ by

Zij0o = Pr{no observed zeros|no spurious zeros, observed zeros < 2}

(1_5”)2 1— by

and find

F.3 Measurement Error Variances

We can combine the model equations to find:

1 . orig dest 1 1
log Fij,t = [ log dist;; + Qrpo T QG+ Nije + Eijgs Fij,t >0
orig

log th = [ log disty; + Qi+ O‘;‘i;St + Nije T 5?]',,57 th > 0,
fore,7=1,...,nand t =1,...,T. Subtracting these two equations yields

>0, F2

iJ,t

log FX

17,t

2 1 2 2 nll
— log Fij,t =&t — Cije ™ N (07 2%’) ’ Fij,t >0,

fori,7=1,...,nand t =1,...,T. This suggests the estimator

R I A
_ t=1 a - _ZH{El't>O’E2't>O}'<logFi1-t—10g
Zleﬂ{ﬁ%,t >0, F2, > 0} 2 —1 I J» J,

~2
Gii =

ij,t

for i,7 = 1,...,n. So note that county-pairs with no entries with two positive flows will have

an estimated measurement error variance of 0. Note that the estimator is unbiased even with

access to one period of mirror trade data (assuming both flows are non-negative). Obtaining

estimators for the measurement error variances is what |Walters (2024)) calls the estimation

step.
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F.4 Prior Means

For the calibration of <{ﬁt} {anp , {aimp}>, I use Fz-jﬁt — [L,. We then know that

75t ig,t"

log Ejt ~N (ﬂt log dist;; + aorlg + 9% 52 4 6 ) Fij,t > 0, (15)

Jt’w

fore,7=1,...,nand t =1,...,T. Using maximum likelihood estimation, it follows that the

prior mean parameters can be estimated from the within-period regressions
log Fwt = [, log dist;; + aong + ozdeSt + Giji, for F;'j,t > 0, (16)
fort =1,...,T, with (;;; an error term. The estimated prior means are

Hije = <ﬁt log dist;; + a5¢" + ddeSt> 1 {Fij’t - 0}
]I{Zs 1H{FUS = O} ~ O}
stzll[{Fi%S > 0}

T
! : Z {55 log dist;; + @zrsig + d;_izst} y
s=1

fori,j=1,...,nand t =1,...,T. Note that for zero flows, the prior mean is imputed using
an across-period average, and fi;;, is only zero if Fij,t is zero in all time periods for that

country pair.

F.5 Prior Variances

From Equation ([15]) it follows that the posterior variances can be estimated by
g?j = Inax {{/;} (lOgEjt /vbzgt|E]t > 0) z]ao}u

for 1,7 = 1,...,n. Here, I again impute across periods for zero flows. Obtaining estimators

for the prior means and variances is what |Walters (2024)) calls the deconvolution step.

F.6 Shrinking Variance Estimates

To leverage country information and the fact that importers and exporters can differ in their
reliability, and reduce the variability for {¢%} and {52}, I fit the models

~9 kS or1g+H§ de>t+ug” ~2 K 0r1g+ s, dest+u$.
Sy = € i and §j; = e i, (17)
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g,orig ¢,dest s,orig s,dest
DK y and K

fixed effects and u;; and u; error terms. Then, rather than using ¢ and 57; I will use the
09 I.%g,orig+l»%g,dest
fitted values ¢;; = €™ i

fori,j =1,...,n, with & , K country-origin and country-destination

K

. ~s,orig | ~s,dest
and §; =™ T

F.7 Posterior Draws
It follows that the estimated posterior distribution for the true flow between location ¢ and
J, Fij+, given its noisy version, Ej,t is given by
T .
. Qij - 60 + (1 — Qy5) - M) E;=0
Fijt Ejy 0 o~ 82 - 2 Lot . , (18)
exp § N | oz log Fiji + ot flijit (T + ?) Fi; >0
§ g'L] Sl] <'LJ S'L]

ij

fori,j=1,..,nand t=1,...,T, where );; ~ Bern <m>

F.8 Diagnostics

From Equation (15)), one can verify how reasonable the normality assumption on the prior

and measurement error model is by comparing the histogram of the normalized residuals

log Fijt — flijit
VE R T
3,5,t, Fij,1>0

with the probability density function of a standard normal distribution. To further check
the reasonableness of the gravity prior, we can look at the adjusted R-squared of the gravity
regressions in Equation (16]), and, following |Allen and Arkolakis (2018), plot the log flows

against the log distance, after partitioning out the origin and destination fixed effects.

F.9 Computational Implementation Details

In the case where for all years one country reports only positive flows and the other country
reports only NAs, I replace the NAs by the positive flows. After this initial replacement

step, I replace the remaining NAs by zeros.
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G Details for Application Adao, Costinot, and Donaldson
(2017)

G.1 Model Detalils

In the empirical application of|Adao, Costinot, and Donaldson| (2017)), the authors investigate
the effects of China joining the WTO, the so-called China shock. Going forward, ();; denotes
the factor endowment of country ¢ in period ¢, 7;;+ denotes the trade cost between country ¢
and j in period ¢, \;;; denotes the expenditure share from country ¢ in country j in period ¢,
Y;: denotes the income of country ¢ in period ¢, and F;; denotes the factor price of country
¢ in period t. Furthermore, p;, denotes the difference between aggregated gross expenditure
and gross production in country ¢ in period ¢, which is assumed to stay constant for different
counterfactuals. Lastly, ¢ denotes the trade elasticity and y; (-) denotes the factor demand
system of country 1.

In |Adao, Costinot, and Donaldson (2017)), two demand systems are considered, normal
CES and “Mixed CES”. I will focus on normal CES, so that

exp {0;j+
hoa = (s}) = Ty,
for §;;, some transformation of factor prices. The function x; ' (-) then maps the observed
expenditures shares to values of this transformation. The structural parameter ¢ is estimated
by assuming a model on the unobserved trade costs {7;;+}, and is estimated using GMM with
as an input the expenditure shares {\;;;}.

The counterfactual question of interest is what the change in China’s welfare is due to
joining the WTO. This question is modeled by choosing the counterfactual proportional
changes in trade costs, {Ti(;{%prop}’ such that Chinese trade costs are brought back to their
1995 levels:

_etprop _ Tij95

of; ,
v Tijt

if 7 or 7 is China,

f
7_c ,prop _ 1

i , otherwise.

Welfare is then defined as the percentage change in income that the representative agent
in China would be indifferent about accepting instead of the counterfactual change in trade

- cf,prop __ : Pa) cf,prop
costs from {7;;+} to {Tmt TW}. These changes in China’s welfare {WChina’t can be
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obtained from first solving for {Pfﬁp P } using the system of equations

Z exp {Xi_l ({Xiji}) — elog (pif£7prop7i3f;prop) }

-1 cf,prop _cf,prop {PCf’proij,t + pj,t} = Pi(j?prop}/i,ta
RRPSL N {Xe ({Xiji}) — e log (P&t’ Tejit )}

j?t

and then using

Pcf,prop ZE [Xé_l ({)‘th})] B
it

WERPreP — 100 - —
’ cf ,prop _cf,pro
S [P (i)

-1

G.2 Calibration Procedure and Computational Details

The default approach from Section [4] can be applied. For the empirical Bayes step, the
calibration of ¥J, we can use the mirror trade data setting from Section [4.2]

In preprocessing the mirror trade dataset from |Linsi, Burgoon, and Miigge| (2023)) I made
some additional assumptions. Firstly, I only consider data from the period that is considered
in |Adao, Costinot, and Donaldson| (2017)). Secondly, I only consider trade flows between
countries that the authors of that paper consider. This amounts to aggregating Belgium
and Luxembourg, and Estonia and Latvia. All the remaining countries I aggregate to “Rest
of World”. Thirdly, when only one of the mirror trade flows is reported, I interpret this as
zero measurement error by setting the unknown mirror trade flow equal to the observed one.
Relatedly, when both mirror trade flows are not reported, I interpret this as there being no
trade, and when one trade flow is zero and the other is substantially larger than zero, I set
the zero trade flow equal to the non-zero one. Lastly, I follow /Adao, Costinot, and Donaldson
(2017) by setting zero trade flows to 0.0025 (million USD). There are however only a handful
of zeros due to the aggregation into “Rest of World”.

When estimating the prior distribution of the true underlying trade flows, I use the
distance dataset from Mayer and Zignago| (2011). For the distance between countries and
the “Rest of World”, I take the average of the distances to all other countries that are
considered in |Adao, Costinot, and Donaldson| (2017)).

An important consideration is that there is a substantial difference between the trade flows
used in |Adao, Costinot, and Donaldson| (2017)), which come from the World Input Output
Dataset (WIOD), and the mirror trade flows from |Linsi, Burgoon, and Miigge (2023), which
are based on the IMF Direction of Trade Statistics dataset. To overcome this discrepancy,

I scale the mirror trade data to make them comparable to the trade flows from WIOD. I

LACD __ F9ACD 2ACD _ 72 pACD /7l ACD :
set oy = FLY0 and Fiy o = Fi, - RSP FG,, for FGPP the noisy trade flow as used
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in |/Adao, Costinot, and Donaldson| (2017). There were also some trade flows in the mirror
trade dataset that reported zeros but had a large trade flow in the WIOD. For these trade
flows, I set the zero mirror trade data entries equal to the positive WIOD entry.

For the computational implementation of the bounds that incorporate both estimation
error and measurement error, I use the code provided by the authors of [Adao, Costinot,
and Donaldson| (2017) to account for estimation error. For some draws of the structural
parameter the code was not converging. I opted to ignore these draws when constructing
the bounds.

G.3 Supplementary Analyses
G.3.1 Winsorized Measurement Error Variances

The distribution of measurement error variances has a heavy right tail, with the noisiest
bilateral trade flow the one from Mexico to Australia with a measurement error variance of
1.42. One might be worried that this heavy tail drives the sensitivity to mismeasurement.
Figure |8] replicates Figure 5| but now winsorizing the measurement error variances at 0.2,
but keeping the posterior variances constant. This amounts to winsorizing 27% of the trade

flows. There are no substantial differences between Figures |§] and

—Point estimate
Only est. error

= =Only meas. error

—--Est. and meas. error

w

N

Change in welfare in China

» | | I I
1996 1998 2000 2002 2004 2006 2008 2010

Figure 8: EB uncertainty quantification for winsorized heteroskedastic normal shocks to
{log F;;+} for the change in China’s welfare due to the China shock. The solid blue line is
the estimate as reported in |Adao, Costinot, and Donaldson| (2017)).
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G.3.2 Using C? instead of C*

Following the discussion in [3.3] Figure [J] plots the interval C? for the change in China’s
welfare. Indeed, the interval that combines estimation and measurement error becomes

extremely wide.

70 .

— T e
—Point estimate " \\\
Only est. error I \
60|~ =Only meas. error ,l' \
—-=Est. and meas. error 'l ‘\‘
1 \
sl i N
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Figure 9: EB uncertainty quantification for heteroskedastic normal shocks to {log F;;,} for
the change in China’s welfare due to the China shock using C2. The solid blue line is the
estimate as reported in |Adao, Costinot, and Donaldson| (2017).

G.3.3 Testing Normality Assumption and Gravity Model for the Prior

As outlined in Remark [T, we can check how reasonable the normality assumption is by
comparing the histogram of the normalized residuals with the probability density function
of a standardized normal distribution. The result can be found in Figure [I0} It follows that
the normality assumption seems reasonable.

Concerning the gravity model, restricting attention to the year 2011, the regression for
the prior mean in Equation has an adjusted R-squared of 0.95, and the coefficient on
log distance is -0.277 with a t-statistic of 3.346. Furthermore, Figure [11] follows |Allen and
Arkolakis (2018) by plotting a linear and nonparametric fit of log trade flows against log
distance, after partitioning out the origin and destination fixed effects. Together, the high
adjusted R-squared and the good performance of the linear fit imply that the gravity model

is a reasonable choice for this setting.
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Figure 10: Plot to compare the normalized residuals with the probability density function of
a standardized normal distribution to check whether the normality assumption for the prior
is reasonable for |Adao, Costinot, and Donaldson| (2017)).

H Details for Application Allen and Arkolakis (2022

H.1 Model Detalils

In the empirical application of Allen and Arkolakis (2022)), the authors investigate what

the returns on investment are of all the highway segments of the US Interstate Highway
network. Going forward, L denotes aggregate labor endowment, Y denotes total income in
the economy, (); denotes the productivity of location 7, A; captures the level of amenities
in location 4, 7;; denotes the travel cost between locations 7 and j, Fj; denotes the traffic
flow between locations ¢ and j, y; denotes total income of location ¢ as a share of the total
income in the economy, ¢; denotes the total labor in location i as a share of the aggregate
labor endowment, and x captures the (inverse of) the welfare of the economy. The parameter
vector is 0 = («a, 3,7, ), where a and § control the strength of the productivity and amenity
externalities respectively, v is the shape parameter of the Fréchet distributed idiosyncratic
productivity shocks, and v governs the strength of traffic congestion.

It is shown in the paper that we can uniquely recover ({yf f.prop } , {éff’pmp} ,XCf’pmp)

cf,prop

given any change in the underlying infrastructure network {Tij } and baseline economic
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Figure 11: Plot that follows |Allen and Arkolakis

(2018) to check whether the gravity model

is reasonable for log trade flows in 2011 from Ad

ao, Costinot, and Donaldson| (2017)).

activity {yiff}, using the system of equations

1+v+y —0(+atv(atp))
cf,prop\ 1+v cf,prop 1+v

(stm) 7 (e

\/ 1+v+y y(B-1)
_ ch,prop< yly (ycf,prop 1+v (gcf,prop) 1+v
- % i 7

uiY + >, Fu
— 1+ —v(1+a)
+ § : _ I (Tpf,pr0p> +v <y§f,pr0p> I+v (g(;f,pmp) I+v
; yiY + >, Fie “ ! !
—tv y(A=B—v(a+tp))
cf,prop\ 1+v cf,prop 1+v

(sitmm) ™ (at)

\/ —y+v y(a+1)
__ . cf,prop yZY cf,prop\ 1+v cf,prop 14v
B VA S AN K

[ kL ki
= =7 y(1=p)
_|_§ : _ FJ (Tftf,pr0p> I4v <y{:f,pr0p> I+v (gc'fvpmp) I+v
YiY + 32 Fr v ! !

J

Having obtained x°“P™P the proportional counterfactual change in welfare is then calculated

using

ch ,Prop __
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H.2 Calibration Procedure and Computational Details

The default approach from Section 4| can be applied. For the empirical Bayes step, the

calibration of ¥, we can use the baseline case with domain knowledge from Section [4.2]
When I run the code from |Allen and Arkolakis| (2022)), the returns of investment for the

links systematically differ slightly from the ones in the paper. I scale my estimates so that

the unperturbed estimates align with the ones in the paper.

H.3 Supplementary Analyses
H.3.1 Probability that Rankings are Reversed

We can learn more from the posterior distributions than just intervals. It might be of interest
what the expected probability is that the ranking of the three links are reversed. When we
consider only estimation error, this expected probability that the ranking between link 1
and link 2 is reversed and the expected probability that the ranking between link 2 and link
3 is reversed both equal 0.000. When we consider only measurement error these expected
probabilities change to 0.000 and 0.030 respectively. When we consider both measurement
error and estimation error simultaneously, the expected probabilities equal 0.000 and 0.022,

respectively.

H.3.2 Testing Normality Assumption and Gravity Model for the Prior

We can again check the reasonableness of the normality assumption as per Remark|[I] The re-
sult can be found in Figure[12], and it follows that the normality assumption is less reasonable
compared to the setting of /Adao, Costinot, and Donaldson| (2017)).

Concerning the gravity model, the regression for the prior mean in Equation has an
adjusted R-squared of 0.9995, and the coefficient on log distance is 1.003 with a t-statistic
of 1138. It follows that log distance is an important driver of log traffic flows, but not in
a negative way as is common in gravity models. Furthermore, Figure [13| follows |Allen and
Arkolakis (2018) by plotting a linear and nonparametric fit of log traffic flows against log
distance, after partitioning out the origin and destination fixed effects. Together, the high
adjusted R-squared and the good performance of the linear fit imply that the gravity model

is a reasonable choice for this setting.
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Figure 12: Plot to compare the normalized residuals with the probability density function of
a standardized normal distribution to check whether the normality assumption for the prior
is reasonable for |Allen and Arkolakis (2022).
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Figure 13: Plot that follows |Allen and Arkolakis (2018) to check whether the gravity model
is reasonable for log traffic flows from |Allen and Arkolakis| (2022).
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